Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\)
\(A< \frac{1}{100\cdot101}+\frac{1}{101\cdot102}+\frac{1}{102\cdot103}+\frac{1}{103\cdot104}+\frac{1}{104\cdot105}\)
\(=\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+\frac{1}{103}-\frac{1}{104}+\frac{1}{104}-\frac{1}{105}\)
\(=\frac{1}{100}-\frac{1}{105}=\frac{1}{2100}=\frac{1}{2^2\cdot3\cdot5^2\cdot7}=B\)
Vậy \(A< B\)
\(\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\)
\(< \frac{1}{100.101}+\frac{1}{101.102}+\frac{1}{102.103}+\frac{1}{103.104}+\frac{1}{104.105}\)
\(< \frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+\frac{1}{103}-\frac{1}{104}+\frac{1}{104}-\frac{1}{105}\)
\(< \frac{1}{100}-\frac{1}{105}=\frac{1}{2100}\)
\(< \frac{1}{2^2.3.5^2.7}\)
\(B=\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}<\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{103.104}\)
Tính VP ra là được
2/
a) Ta có x : 2 = y : 5
=> \(\frac{x}{2}=\frac{y}{5}\) và \(x+y=21\).
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3.\)
\(\left\{{}\begin{matrix}\frac{x}{2}=3=>x=3.2=6\\\frac{y}{5}=3=>y=3.5=15\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(6;15\right)\).
Chúc bạn học tốt!
Câu 1:
Ta có:\(\frac{215}{216}< 1< \frac{104}{103}\)
Suy ra\(\frac{215}{216}< \frac{104}{103}\)
\(1,\)Vì \(\frac{215}{216}< 1< \frac{104}{103}\)
\(=>\frac{215}{216}< \frac{104}{103}\)
\(2,\)Vì \(-\frac{13}{27}< 1< \frac{13131313}{27272727}\)
\(=>-\frac{13}{27}< \frac{13131313}{27272727}\)
Nhớ ti.ck mk nha bn =)
\(2M=\frac{2^{103}+2}{2^{103}+1}=1+\frac{1}{2^{103}+1}\left(\cdot\right)\)
\(2N=\frac{2^{104}+2}{2^{104}+1}=1+\frac{1}{2^{104}+1}\left(\cdot\cdot\right)\)
\(\frac{1}{2^{103}+1}>\frac{1}{2^{104}+1}\Rightarrow1+\frac{1}{2^{103}+1}>1+\frac{1}{2^{104}+1}\left(\cdot\cdot\cdot\right)\)
Từ\(\left(\cdot\right);\left(\cdot\cdot\right)\&\left(\cdot\cdot\cdot\right)\Rightarrow2M>2N\Leftrightarrow M>N.\)