Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình bị nhầm ở đáp án
A. \(\frac{4}{3}\mu s\) các câu khác cũng như vậy nhé
Năng lượng của mạch dao động W = \(\frac{Q_0^2}{2C}=\frac{LI^2_0}{2}\) → chu kì dao động của mạch
\(T=2\pi\sqrt{LC}=2\pi\frac{Q_0}{I_0}=16.10^{-6}\left(s\right)=16\mu s\).Thời gian điện tích giảm từ Q0 dến Q0/2
q = Q0cos \(\frac{2\pi}{T}t=\frac{Q_0}{2}\rightarrow\frac{2\pi}{T}t=\frac{\pi}{3}\rightarrow t=\frac{T}{6}=\frac{8}{3}\mu s\)
→ C
Đáp án C
Phương pháp: Áp dụng định luật bảo toản năng lượng trong mạch LC và công thức tính bước sóng điện từtrong mạch dao động
Cách giải:
Áp dụng định luật bảo toàn năng lượng trong mạch LC ta có
Bước sóng điện từ mà mạch này có thể cộng hưởng là
Hướng dẫn giải:
Thời gian để tụ phòng hết điện tích (q0 -> 0) được tính như sau
\(t = \frac{\varphi}{\omega}=\frac{\pi/2}{2\pi/T}=\frac{T}{4} \) => \(T = 4.2.10^{-6}= 8.10^{-6}s.\)
\(I_0 = q_0.\omega = 10^{-8}.\frac{2\pi}{8.10^{-6}}= 2,5.\pi.10^{-3} => I = \frac{I_0}{\sqrt{2}} \approx 5,55 mA.\)
Đáp án D
Phương pháp: Bước sóng λ = cT
Cách giải:
Ta có:
Bước sóng mạch này có thể cộng hưởng là:
Bước sóng để mạch cộng hưởng được
Đáp án C