Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) = = -4.
b) = = (2-x) = 4.
c) =
= = = .
d) = = -2.
e) = 0 vì (x2 + 1) = x2( 1 + ) = +∞.
f) = = -∞, vì > 0 với ∀x>0.
Do \(\lim\limits_{x\rightarrow2}\dfrac{f\left(x\right)-3}{x-2}=5\Rightarrow\) chọn \(f\left(x\right)=5\left(x-2\right)+3=5x-7\)
\(\lim\limits_{x\rightarrow2}\dfrac{\sqrt[]{5x-7+6}-\sqrt[3]{x+25}}{x-2}=\lim\limits_{x\rightarrow2}\dfrac{\sqrt[]{5x-1}-3+3-\sqrt[3]{x+25}}{x-2}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{\dfrac{5\left(x-2\right)}{\sqrt[]{5x-1}+3}-\dfrac{x-2}{9+3\sqrt[3]{x+25}+\sqrt[3]{\left(x+25\right)^2}}}{x-2}\)
\(=\lim\limits_{x\rightarrow2}\left(\dfrac{5}{\sqrt[]{5x-1}+3}-\dfrac{1}{9+3\sqrt[3]{x+25}+\sqrt[3]{\left(x+25\right)^2}}\right)=\dfrac{5}{3+3}-\dfrac{1}{9+9+9}=\dfrac{43}{54}\)
Em kiểm tra lại đề, chỗ \(f\left(x\right)-32\) kia có vẻ sai, vì như thế thì biểu thức đã cho ko phải dạng vô định
Mấy câu này bạn cần giải theo kiểu trắc nghiệm hay tự luận nhỉ?
Do \(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-2}{x-3}\) hữu hạn \(\Rightarrow f\left(x\right)-2=0\) có nghiệm \(x=3\)
Hay \(f\left(3\right)-2=0\Rightarrow f\left(3\right)=2\)
\(\Rightarrow I=\lim\limits_{x\rightarrow3}\left(\dfrac{f\left(x\right)-2}{x-3}\right).\dfrac{1}{\sqrt{5f\left(x\right)+6}+1}=\dfrac{1}{4}.\dfrac{1}{\sqrt{5.f\left(3\right)+6}+1}\)
\(=\dfrac{1}{4}.\dfrac{1}{\sqrt{5.2+6}+1}=\dfrac{1}{20}\)
1.
\(\lim\limits_{x\to (-1)-}\frac{\sqrt{x^2-3x-4}}{1-x^2}=\lim\limits_{x\to (-1)-}\frac{\sqrt{(x+1)(x-4)}}{(1-x)(1+x)}\)
\(=\lim\limits_{x\to (-1)-}\frac{\sqrt{4-x}}{(x-1)\sqrt{-(x+1)}}=-\infty\) do:
\(\lim\limits_{x\to (-1)-}\frac{\sqrt{4-x}}{x-1}=\frac{-\sqrt{5}}{2}<0\) và \(\lim\limits_{x\to (-1)-}\frac{1}{\sqrt{-(x+1)}}=+\infty\)
2.
\(\lim\limits_{x\to 2+}\left(\frac{1}{x-2}-\frac{x+1}{\sqrt{x+2}-2}\right)=\lim\limits_{x\to 2+}\frac{1-(x+1)(\sqrt{x+2}+2)}{x-2}=-\infty\) do:
\(\lim\limits_{x\to 2+}\frac{1}{x-2}=+\infty\) và \(\lim\limits_{x\to 2+}[1-(x+1)(\sqrt{x+2}+2)]=-11<0\)
Đề là \(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-5}{x-3}\) hay \(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-15}{x-3}\) em?
\(\dfrac{f\left(x\right)-5}{x-3}\) thì giới hạn bên dưới ko phải dạng vô định, kết quả là vô cực
\(\lim\limits_{x\rightarrow6}\dfrac{f\left(x\right)-6}{x-6}\) hữu hạn \(\Rightarrow f\left(6\right)=6\)
\(...=\lim\limits_{x\rightarrow6}\dfrac{\dfrac{f\left(x\right)-6}{\sqrt[3]{\left[f\left(x\right)+21\right]^2}+3\sqrt[3]{f\left(x\right)+21}+9}}{x-6}\)
\(=\dfrac{9}{2}.\dfrac{1}{\sqrt[3]{\left(6+21\right)^2}+3\sqrt[3]{6+21}+9}\)