K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2016

\(L=\lim\limits_{x\rightarrow\frac{\pi}{3}}\frac{\tan^3x-3\tan x}{\cos\left(x+\frac{\pi}{6}\right)}=\lim\limits_{x\rightarrow\frac{\pi}{3}}\frac{\tan x\left(\tan^2x-3\right)}{\cos\left(x+\frac{\pi}{6}\right)}\)

    \(=\sqrt{3}\lim\limits_{x\rightarrow\frac{\pi}{3}}\frac{\left(\tan x-\sqrt{3}\right)\left(\tan x+\sqrt{3}\right)}{\sin\left(\frac{\pi}{3}-x\right)}=\sqrt{3}.2\sqrt{3}\lim\limits_{x\rightarrow\frac{\pi}{3}}\frac{\tan x-\sqrt{3}}{\sin\left(\frac{\pi}{3}-x\right)}\)

    \(=6\lim\limits_{x\rightarrow\frac{\pi}{3}}\frac{\sin\left(\frac{\pi}{3}-x\right)}{\cos x.\cos\frac{\pi}{3}\sin\left(\frac{\pi}{3}-x\right)}=-12\lim\limits_{x\rightarrow\frac{\pi}{3}}\frac{1}{\cos x}=-24\)

NV
27 tháng 2 2020

Tất cả đều ko phải dạng vô định, bạn cứ thay số vào tính thôi:

\(a=\frac{sin\left(\frac{\pi}{4}\right)}{\frac{\pi}{2}}=\frac{\sqrt{2}}{\pi}\)

\(b=\frac{\sqrt[3]{3.4-4}-\sqrt{6-2}}{3}=\frac{0}{3}=0\)

\(c=0.sin\frac{1}{2}=0\)

27 tháng 2 2020

câu b: là gh dạng 0/0 chứa căn không đồng bậc thì phải thêm bớt mà đâu phải thay số đâu mình tính rồi nhưng số xấu bằng \(\frac{38-2\sqrt{6}}{15}\)

25 tháng 4 2017

a/ \(\lim\limits_{x\to 1} f(x)=\frac{x^{2}-5x + 6}{x-2} \)

\(<=>\lim\limits_{x\to 1} f(x)=\dfrac{(x-3)(x-2)}{x-2} \)

<=>\(\lim\limits_{x\to 1} f(x)=x-3 \)

\(<=>\lim\limits_{x\to 1} f(x)=-2\)

NV
27 tháng 9 2020

\(1+sin^3x+cos^3x=3sinx.cosx\)

\(\Leftrightarrow1+\left(sinx+cosx\right)\left(1-sinx.cosx\right)=3sinx.cosx\)

Đặt \(sinx+cosx=t\Rightarrow\left[{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)

Pt trở thành:

\(1+t\left(1-\frac{t^2-1}{2}\right)=\frac{3}{2}\left(t^2-1\right)\)

\(\Leftrightarrow2+t\left(3-t^2\right)=3t^2-3\)

\(\Leftrightarrow t^3+3t^2-3t-5=0\)

\(\Leftrightarrow\left(t+1\right)\left(t^2+2t-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=\sqrt{6}-1>\sqrt{2}\left(l\right)\\t=\sqrt{6}+1>\sqrt{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow sinx+cosx=-1\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=-1\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)

\(\Rightarrow cos\left(x+\frac{\pi}{4}\right)=\pm\sqrt{1-sin^2\left(x+\frac{\pi}{4}\right)}=\pm\frac{\sqrt{2}}{2}\)

29 tháng 3 2020

Bài 1:

ĐK : sinx cosx > 0

Khi đó phương trình trở thành

sinx+cosx=\(2\sqrt{\sin x\cos x}\)

ĐK sinx + cosx >0 → sinx>0 ; cosx>0

Khi đó \(2\sqrt{\sin x\cos x}\Leftrightarrow2\sin x=1\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

Vậy ...

29 tháng 3 2020

Bài 2:

ĐK : \(\sin\left(3x+\frac{\pi}{4}\right)\ge0\)

Khi đó phương trình đã cho tương đương với phương trình \(\sin2x=\frac{1}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\pi}{12}+k\pi\\x=\frac{5\pi}{12}+k\pi\end{matrix}\right.\)

Trong khoảng từ \(\left(-\pi,\pi\right)\) ta nhận được các giá trị :

\(x=\frac{\pi}{12}\) (TMĐK)

\(x=-\frac{11\pi}{12}\) (KTMĐK)

\(x=\frac{5\pi}{12}\) (KTMĐK)

\(x=-\frac{7\pi}{12}\) (TMĐK)

Vậy ta có 2 nghiệm thõa mãn \(x=\frac{\pi}{12}\)\(x=-\frac{7\pi}{12}\)

4 tháng 5 2016

Xét giới hạn :

\(L=\lim\limits_{x\rightarrow\frac{\pi}{4}}\frac{1-\tan x}{1-\cot x}=\lim\limits_{x\rightarrow\frac{\pi}{4}}\frac{1-\frac{\sin x}{\cos x}}{1-\frac{\cos x}{\sin x}}=\lim\limits_{x\rightarrow\frac{\pi}{4}}\frac{\left(\cos x-\sin x\right)\sin x}{\left(\sin x-\cos x\right)\cos x}\)

   \(=-\lim\limits_{x\rightarrow\frac{\pi}{4}}\tan x=-1\)

NV
11 tháng 2 2020

a/ Hmm, bạn có nhầm lẫn chỗ nào ko nhỉ, nghiệm của pt này xấu khủng khiếp

b/ \(\Leftrightarrow sin\frac{5x}{2}-cos\frac{5x}{2}-sin\frac{x}{2}-cos\frac{x}{2}=cos\frac{3x}{2}\)

\(\Leftrightarrow2cos\frac{3x}{2}.sinx-2cos\frac{3x}{2}cosx=cos\frac{3x}{2}\)

\(\Leftrightarrow cos\frac{3x}{2}\left(2sinx-2cosx-1\right)=0\)

\(\Leftrightarrow cos\frac{3x}{2}\left(\sqrt{2}sin\left(x-\frac{\pi}{4}\right)-1\right)=0\)

c/ Do \(cosx\ne0\), chia 2 vế cho cosx ta được:

\(3\sqrt{tanx+1}\left(tanx+2\right)=5\left(tanx+3\right)\)

Đặt \(\sqrt{tanx+1}=t\ge0\)

\(\Leftrightarrow3t\left(t^2+1\right)=5\left(t^2+2\right)\)

\(\Leftrightarrow3t^3-5t^2+3t-10=0\)

\(\Leftrightarrow\left(t-2\right)\left(3t^2+t+5\right)=0\)

d/ \(\Leftrightarrow\sqrt{2}\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)=\frac{\sqrt{3}}{2}cos2x-\frac{1}{2}sin2x\)

\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{3}\right)=-sin\left(2x-\frac{\pi}{3}\right)\)

Đặt \(x+\frac{\pi}{3}=a\Rightarrow2x=2a-\frac{2\pi}{3}\Rightarrow2x-\frac{\pi}{3}=2a-\pi\)

\(\sqrt{2}sina=-sin\left(2a-\pi\right)=sin2a=2sina.cosa\)

\(\Leftrightarrow\sqrt{2}sina\left(\sqrt{2}cosa-1\right)=0\)

NV
28 tháng 4 2020

\(a=\lim\limits_{x\rightarrow1}\frac{\left(\sqrt{3x+1}-\sqrt{x+3}\right)\left(\sqrt{3x+1}+\sqrt{x+3}\right)}{\left(x-1\right)\left(x+1\right)\left(\sqrt{3x+1}+\sqrt{x+3}\right)}=\lim\limits_{x\rightarrow1}\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(\sqrt{3x+1}+\sqrt{x+3}\right)}\)

\(=\lim\limits_{x\rightarrow1}\frac{2}{\left(x+1\right)\left(\sqrt{3x+1}+\sqrt{x+3}\right)}=\frac{2}{2.4}=\frac{1}{4}\)

\(b=\frac{3}{0}=+\infty\)

\(c=\frac{-13}{0}=-\infty\)