Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x+1\right)^3=125\)
\(\left(2x+1\right)^3=5^3\)
\(2x+1=5\)
\(2x=4\)
\(x=2\)
\(b,x^6=x^2\)
\(x^6-x^2=0\)
\(x^2\cdot\left(x^4-1\right)=0\)
\(\orbr{\begin{cases}x^2=0\\x^4-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
\(c\text{}\text{}\text{}\text{},\left(x-2\right)\cdot\left(x-5\right)=0\)
\(\orbr{\begin{cases}x-2=0\\x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=5\end{cases}}}\)
\(d,x^{10}-x^5=0\)
\(x^5\cdot\left(x^5-1\right)=0\)
\(\orbr{\begin{cases}x^5=0\\x^5=1\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
\(e,\left(x-5\right)^4=\left(x-5\right)^6\)
\(\left(x-5\right)^4-\left(x-5\right)^6=0\)
\(\left(x-5\right)^4\cdot\left[1-\left(x-5\right)^2\right]=0\)
\(\orbr{\begin{cases}\left(x-5\right)^4=0\\1-\left(x-5\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=\pm1+5\end{cases}}}\)
\(\hept{\begin{cases}x=5\\x=6\\x=4\end{cases}}\)
\(\left(2x+1\right)^3=125\Rightarrow\left(2x+1\right)^3==5^3\Rightarrow2x+1=5\)
\(\Rightarrow2x=5-1=4\Rightarrow x=4:2=2\)
\(x^6=x^2\Rightarrow x^2.x^4=x^2\)Vì vậy nên \(x=\pm1\)
\(\left(x-2\right)\left(x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\Rightarrow x=0+2=5\\x-5=0\Rightarrow X=0+5=5\end{cases}}\)
a ) ( x + 1 ) x ( x2 - 4 ) = 0
vậy chắc chắn 1 biểu thức phải bằng 0 để có kết quả đúng . vậy chỉ có thể là x2 - 4 = 0
vì phép còn lại là x + 1 = số nguyên dương
x2 - 4 = 0
x = 2
b ) x15 = x
vậy quá rõ x = 1 , 0
vì chỉ có 2 số này nhân bao nhiêu lần chính nó cũng bằng nó
c ) ( x - 5 ) 4 = ( x - 5 )6
4 x - 625 = 6 x - 15625
4 x + 15625 - 625 = 6 x
4 x + 15000 = 6 x
15000 = 2 x
x = 7500
d ) làm sau
a. \(\left(x+1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
TH1: \(x+1=0\Rightarrow x=-1\)
TH2: \(x-2=0\Rightarrow x=2\)
TH3: \(x+2=0\Rightarrow x=-2\)
Vậy:...
b) \(x^{15}=x\)
\(\Rightarrow x\in\left\{0;1;-1\right\}\)
c) \(\left(x-5\right)^4=\left(x-5\right)^6\)
TH1:\(x-5=1\Rightarrow x=6\)
TH2: \(x-5=-1\Rightarrow x=4\)
TH3: \(x-5=0\Rightarrow x=5\)
d) \(\left(2x+1\right)^3=125\)
\(\Leftrightarrow2x+1=\sqrt[3]{125}=5\)
\(\Leftrightarrow x=2\)
\(2^x.4=128\)
\(2^x=128:4\)
\(2^x=32\)
\(\Leftrightarrow2^x=2^5\Leftrightarrow x=5\)
\(x^{15}=x\Leftrightarrow x\in\left\{-1;0;1\right\}\)
\(\left(2x+1\right)^3=125\)
\(\Leftrightarrow\left(2x+1\right)^3=5^3\)
\(\Leftrightarrow2x+1=5\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
\(\left(x-5\right)^6=\left(x-5\right)^4\)
\(\Leftrightarrow\hept{\begin{cases}x-5=-1\\x-5=0\\x-5=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\x=5\\x=6\end{cases}}\)
\(\text{Vậy:}\)\(x\in\left\{4;5;6\right\}\)
\(2^x.4=128\Rightarrow2^x=32\Rightarrow2^x=2^5\Rightarrow x=5.\)
\(x^{15}=x\Rightarrow\orbr{\begin{cases}x=\pm1\\x=0\end{cases}}\)
\(\left(2x+1\right)^3=125\)
<=> \(\left(2x+1\right)^3=5^3\)
<=> \(2x+1=5\)
<=> \(x=2\)
\(\left(x-5\right)^6=\left(x-5\right)^4\)
<=> \(\left(x-5\right)^6-\left(x-5\right)^4=0\)
<=> \(\left(x-5\right)^4.\left[\left(x-5\right)^2-1\right]=0\)
<=> \(\orbr{\begin{cases}\left(x-5\right)^4=0\\\left(x-5\right)^2-1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x-5=0\\\left(x-5\right)^2=1\end{cases}}\)
Giải ra được x = 5 ; x = 6 ; x = 4 .
a) 2^x.2^4=128
=>2^x.2^2=2^7
=>2^x=2^7:2^2
=>2^x=2^5
=>x=5
b)x^15=x
=>x^15-x=0
=>x(x^16-x)=0
=>2 trượng hợp:x=0 và x^16-1=0(x^16-1=0 cx 2 th nha)
b),d),e) như nhau nha!
c) dễ rồi
\(a)2^x\cdot4=128\)
\(\Rightarrow2^x=\frac{128}{4}\)
\(\Rightarrow2^x=32\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
\(b)x^{15}=x\)
\(\Rightarrow x^{15}-x=0\)
\(\Rightarrow x(x^{14}-1)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x^{14}-1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=0\\x^{14}=1\end{cases}\Rightarrow}\hept{\begin{cases}x=0\\x=1\end{cases}}\)
\(c)(2x+1)^3=125\)
\(\Rightarrow(2x+1)^3=5^3\)
\(\Rightarrow2x+1=5\)
\(\Rightarrow2x=5-1\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=4:2=2\)
\(d)(x-5)^4=(x-5)^6\)
\(\Rightarrow(x-5)^6-(x-5)^4=0\)
\(\Rightarrow(x-5)^4\cdot\left[(x-5)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}(x-5)^4=0\\(x-5)^2-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=6\end{cases}}\)
\(e)(2x-15)^5=(2x-15)^3\)
\(\Rightarrow(2x-15)^5-(2x-15)^3=0\)
\(\Rightarrow(2x-15)^3-\left[(2x-15)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}(2x-15)^3=0\\(2x-15)^2-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\varnothing\\x=8\end{cases}}\)
Chúc bạn hoc tốt :>
a/ \(\dfrac{5}{6}-\left(\dfrac{3}{6}x-\dfrac{1}{5}\right)=\dfrac{-5}{12}\)
\(\Leftrightarrow\dfrac{1}{2}x-\dfrac{1}{5}=\dfrac{5}{6}-\dfrac{-5}{12}\)
\(\Leftrightarrow\dfrac{1}{2}x-\dfrac{1}{5}=\dfrac{5}{4}\)
\(\Leftrightarrow\dfrac{1}{2}x=\dfrac{29}{20}\)
\(\Leftrightarrow x=\dfrac{29}{10}\)
Vậy ...
b/ \(\left(4x-3\right)\left(\dfrac{5}{4}x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-3=0\\\dfrac{5}{4}x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=3\\\dfrac{5}{4}x=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-\dfrac{8}{5}\end{matrix}\right.\)
Vậy .....
c/ \(\left|\dfrac{7}{8}x-\dfrac{2}{3}\right|-\dfrac{3}{4}=1,5\)
\(\Leftrightarrow\left|\dfrac{7}{8}x-\dfrac{2}{3}\right|=\dfrac{9}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{7}{8}x-\dfrac{2}{3}=\dfrac{9}{4}\\\dfrac{7}{8}x-\dfrac{2}{3}=-\dfrac{9}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{7}{8}x=\dfrac{35}{12}\\\dfrac{7}{8}x=-\dfrac{19}{12}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{10}{3}\\x=-\dfrac{38}{21}\end{matrix}\right.\)
Vậy ......
d/ \(\left(\dfrac{3}{5}x-\dfrac{1}{2}\right)^3=\dfrac{8}{125}\)
\(\Leftrightarrow\left(\dfrac{3}{5}x-\dfrac{1}{2}\right)^3=\left(\dfrac{2}{5}\right)^3\)
\(\Leftrightarrow\dfrac{3}{5}x-\dfrac{1}{2}=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{3}{5}x=\dfrac{9}{10}\)
\(\Leftrightarrow x=\dfrac{3}{2}\)
Vậy ...
a. \(\dfrac{5}{6}-\left(\dfrac{3}{6}x-\dfrac{1}{5}\right)=\dfrac{-5}{12}\)
\(\left(\dfrac{3}{6}x-\dfrac{1}{5}\right)=\dfrac{5}{6}-\dfrac{-5}{12}\)
\(\left(\dfrac{3}{6}x-\dfrac{1}{5}\right)=\dfrac{5}{4}\)
\(\dfrac{3}{6}x=\dfrac{5}{4}+\dfrac{1}{5}\)
\(\dfrac{3}{6}x=\dfrac{29}{20}\)
\(x=\dfrac{29}{20}:\dfrac{3}{6}\)
\(x=\dfrac{29}{10}\)
Vậy...
b. \(\left(4x-3\right).\left(\dfrac{5}{4}x+2\right)=0\)
\(\left[{}\begin{matrix}4x-3=0\\\dfrac{5}{4}x+2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}4x=3\\\dfrac{5}{4}x=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{-8}{5}\end{matrix}\right.\)
Vậy ...
c. \(\left|\dfrac{7}{8}x-\dfrac{2}{3}\right|-\dfrac{3}{4}=1,5\)
\(\left|\dfrac{7}{8}x-\dfrac{2}{3}\right|=1,5+\dfrac{3}{4}\)
\(\left|\dfrac{7}{8}x-\dfrac{2}{3}\right|=\dfrac{9}{4}\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{7}{8}x-\dfrac{2}{3}=\dfrac{9}{4}\\\dfrac{7}{8}x-\dfrac{2}{3}=\dfrac{-9}{4}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{7}{8}x=\dfrac{35}{12}\\\dfrac{7}{8}x=\dfrac{-19}{12}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{10}{3}\\x=\dfrac{-38}{21}\end{matrix}\right.\)
Vậy...
Bài 1:
\(a,22\frac{1}{2}.\frac{7}{9}+50\%-1,25\)
=\(\frac{45}{2}.\frac{7}{9}+\frac{1}{2}-\frac{5}{4}\)
=\(\frac{35}{2}+\frac{1}{2}-\frac{5}{4}\)
=\(\frac{70}{4}+\frac{2}{4}-\frac{5}{4}\)
=\(\frac{67}{4}\)
\(b,1,4.\frac{15}{49}-\left(\frac{4}{5}+\frac{2}{3}\right):2\frac{1}{5}\)
=\(\frac{7}{5}.\frac{15}{49}-\left(\frac{12}{15}+\frac{10}{15}\right):\frac{11}{5}\)
=\(\frac{3}{7}-\frac{22}{15}.\frac{5}{11}\)
=\(\frac{3}{7}-\frac{2}{3}\)
=\(-\frac{5}{21}\)
\(c,125\%.\left(-\frac{1}{2}\right)^2:\left(1\frac{5}{6}-1,6\right)+2016^0\)
=\(\frac{5}{4}.\frac{1}{4}:\left(\frac{11}{6}-\frac{8}{5}\right)+1\)
=\(\frac{5}{16}:\frac{7}{30}+1\)
=\(\frac{131}{56}\)
\(d,1,4.\frac{15}{49}-\left(20\%+\frac{2}{3}\right):2\frac{1}{5}\)
=\(\frac{7}{5}.\frac{15}{49}-\left(\frac{1}{5}+\frac{2}{3}\right):\frac{11}{5}\)
=\(\frac{3}{7}-\frac{13}{15}:\frac{11}{5}\)
=\(\frac{3}{7}-\frac{13}{33}\)
=\(\frac{8}{231}\)
Bài đ làm giống hệt như bài c
Bài 2 :
\(a,\left|\frac{3}{4}.x-\frac{1}{2}\right|=\frac{1}{4}\)
=>\(\left[{}\begin{matrix}\frac{3}{4}.x-\frac{1}{2}=\frac{1}{4}\\\frac{3}{4}.x-\frac{1}{2}=-\frac{1}{4}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\frac{3}{4}.x=\frac{1}{4}+\frac{1}{2}=\frac{3}{4}\\\frac{3}{4}.x=-\frac{1}{4}+\frac{1}{2}=\frac{1}{4}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\frac{3}{4}:\frac{3}{4}=1\\x=\frac{1}{4}:\frac{3}{4}=\frac{1}{3}\end{matrix}\right.\)
Vậy x ∈{1;\(\frac{1}{3}\)}
\(b,\frac{5}{3}.x-\frac{2}{5}.x=\frac{19}{10}\)
=>\(\frac{19}{15}.x=\frac{19}{10}\)
=>\(x=\frac{19}{10}:\frac{19}{15}=\frac{3}{2}\)
Vậy x ∈ {\(\frac{3}{2}\)}
c,\(\left|2.x-\frac{1}{3}\right|=\frac{2}{9}\)
=>\(\left[{}\begin{matrix}2.x-\frac{1}{3}=\frac{2}{9}\\2.x-\frac{1}{3}=-\frac{2}{9}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2.x=\frac{2}{9}+\frac{1}{3}=\frac{5}{9}\\2.x=-\frac{2}{9}+\frac{1}{3}=\frac{1}{9}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\frac{5}{9}:2=\frac{5}{18}\\x=\frac{1}{9}:2=\frac{1}{18}\end{matrix}\right.\)
Vậy x∈{\(\frac{5}{18};\frac{1}{18}\)}
\(d,x-30\%.x=-1\frac{1}{5}\)
=\(70\%x=-\frac{6}{5}\)
=\(\frac{7}{10}.x=-\frac{6}{5}\)
=>\(x=-\frac{6}{5}:\frac{7}{10}=-\frac{12}{7}\)
Vậy x∈{\(-\frac{12}{7}\)}
Bài 2
a/
\(\Rightarrow\left[{}\begin{matrix}\frac{3}{4}.x-\frac{1}{2}=\frac{1}{4}\\\frac{3}{4}.x-\frac{1}{2}=-\frac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{3}{4}.x=\frac{1}{4}+\frac{1}{2}\\\frac{3}{4}.x=-\frac{1}{4}+\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{3}{4}.x=\frac{3}{4}\\\frac{3}{4}.x=\frac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{3}{4}:\frac{3}{4}\\x=\frac{1}{4}:\frac{3}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy \(x=1\) hoặc \(x=\frac{1}{3}\)
b/ Đặt x làm thừa số chung rồi tính như bình thường
c/ Tương tự câu a
d/ Tương tự câu b
Bài 1:
\(a.\left(-356+57\right)-\left(27-356\right)=-356+57-27+356=\left(-356+356\right)+\left(57-27\right)=30\) \(b.125.\left(-24+24.225\right)=125.\left(-24+5400\right)=125.\left(-24\right)+125.5400=-3000+675000=672000\)
\(c.26.\left(-125\right)-125.\left(-36\right)=-125.\left(26-36\right)=-125.\left(-10\right)=1250\)
Bài 2:
\(a.\left(2x-4\right)^2=0\)
\(\Rightarrow2x-4=0\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
\(b.\frac{x+5}{x+3}=\frac{x+3+2}{x+3}=\frac{x+3}{x+3}+\frac{2}{x+3}=1+\frac{2}{x+3}\)
Để (x+5) chia hết cho (x+3) thì 2 phải chia hết cho (x+3)
\(\Rightarrow x+3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(x+3=1\Rightarrow x=-2\)
\(x+3=-1\Rightarrow x=-4\)
\(x+3=2\Rightarrow x=-1\)
\(x+3=-2\Rightarrow x=-5\)
Vậy \(x\in\left\{-2;-4;-1;-5\right\}\)
Bài 2:
a)\(\left(2x-4\right)^2=0\)
\(\Leftrightarrow2x-4=0\)
\(\Leftrightarrow2x=4\Leftrightarrow x=2\)
b)\(\frac{x+5}{x+3}=\frac{x+3+2}{x+3}=\frac{x+3}{x+3}+\frac{2}{x+3}=1+\frac{2}{x+3}\in Z\)
Suy ra \(2⋮x+3\Rightarrow x+3\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
\(\Rightarrow x\in\left\{-2;-4;-1;-5\right\}\)
( x + 5 ) 3 = 125
=> ( x + 5 ) 3 = 53
=> x + 5 = 5
=> x = 5 - 5
=> x = 0
\(\left(x+5\right)^3=125\)
\(\Leftrightarrow x+5=5\)
\(\Leftrightarrow x=0\)