Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sqrt{3x+4}-\sqrt{3x+2}\right)\left(\sqrt{9x^2+18x+8}+1\right)=2\)
\(\Leftrightarrow\left(\sqrt{3x+4}-\sqrt{3x+2}\right)\left(\sqrt{\left(3x+4\right)\left(3x+2\right)}+1\right)=2\)
Đặt \(\left\{{}\begin{matrix}\sqrt{3x+4}=a\\\sqrt{3x+2}=b\end{matrix}\right.\)\(\left(a,b\ge0\right)\), ta có hpt:
\(\left\{{}\begin{matrix}a^2-b^2=2\left(1\right)\\\left(a-b\right)\left(ab+1\right)=2\end{matrix}\right.\)
\(\Leftrightarrow a^2-b^2=\left(a-b\right)\left(ab+1\right)\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)-\left(a-b\right)\left(ab+1\right)\)
\(\Leftrightarrow\left(a-b\right)\left(a+b-ab-1\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(b-1\right)\left(1-a\right)=0\)
* Trường hợp 1: \(a-b=0\Leftrightarrow a=b\)
\(\Rightarrow\sqrt{3x+4}=\sqrt{3x+2}\)
\(\Leftrightarrow0x=\sqrt{2}-2\)
=> Pt vô no
* Trường hợp 2: \(b-1=0\Leftrightarrow b=1\)
\(\Rightarrow\sqrt{3x+2}=1\)
\(\Leftrightarrow x=-\dfrac{1}{3}\left(n\right)\)
* Trường hợp 3: \(a-1=0\Leftrightarrow a=1\)
\(\Rightarrow\sqrt{3x+4}=1\)
\(\Rightarrow x=-1\left(l\right)\)
Vậy x = \(-\dfrac{1}{3}\)
3.
ĐKXĐ: \(x\ge-1;x\ne13\)
\(\left(x+2\right)\left(\sqrt{x+1}-2\right)=\sqrt[3]{2x+1}-3\)
\(\Leftrightarrow\left(x+2\right)\sqrt{x+1}-2x-4=\sqrt[3]{2x+1}-3\)
\(\Leftrightarrow\left(x+1\right)\sqrt{x+1}+x+1-\left(2x+1\right)-\sqrt[3]{2x+1}=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt[3]{2x+1}=b\end{matrix}\right.\)
\(\Rightarrow a^3+a-b^3-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{x+1}=\sqrt[3]{2x+1}\) (\(x\ge-\frac{1}{2}\))
\(\Leftrightarrow\left(x+1\right)^3=\left(2x+1\right)^2\)
\(\Leftrightarrow x=?\)
2.
ĐKXĐ: \(x\ge-\frac{1}{2}\)
\(\Leftrightarrow8x^3+2x-\left(2x+2\right)\sqrt{2x+1}=0\)
Đặt \(\left\{{}\begin{matrix}2x=a\\\sqrt{2x+1}=b\end{matrix}\right.\)
\(\Rightarrow a^3+a-\left(b^2+1\right)b=0\)
\(\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow2x=\sqrt{2x+1}\) (\(x\ge0\))
\(\Leftrightarrow4x^2=2x+1\)
\(\Leftrightarrow x=?\)
a)\(\left(3x+1\right)\sqrt{3x+1}=8x^2+5x+1\)
\(pt\Leftrightarrow\left(3x+1\right)\sqrt{3x+1}=8x^2+5x+1\)
\(\Leftrightarrow\frac{\left(3x+1\right)^3-1}{\left(3x+1\right)\sqrt{3x+1}+1}=8x^2+5x\)
\(\Leftrightarrow\frac{\left(3x+1-1\right)\left[\left(3x+1\right)^2+3x+2\right]}{\left(3x+1\right)\sqrt{3x+1}+1}=x\left(8x+5\right)\)
\(\Leftrightarrow\frac{9x\left(3x^2+3x+1\right)}{\left(3x+1\right)\sqrt{3x+1}+1}-x\left(8x+5\right)=0\)
\(\Leftrightarrow x\left(\frac{9\left(3x^2+3x+1\right)}{\left(3x+1\right)\sqrt{3x+1}+1}-\left(8x+5\right)\right)=0\)
\(\Rightarrow x=0\), nghiệm còn lại khó quá t gg =))
b)\(9x+17=6\sqrt{8x+1}+4\sqrt{x+3}\)
ĐK:\(x\ge-\frac{1}{8}\)
\(pt\Leftrightarrow9x-9=6\sqrt{8x+1}-18+4\sqrt{x+3}-8\)
\(\Leftrightarrow9\left(x-1\right)=\frac{36\left(8x+1\right)-324}{6\sqrt{8x+1}+18}+\frac{16\left(x+3\right)-64}{4\sqrt{x+3}+8}\)
\(\Leftrightarrow9\left(x-1\right)=\frac{288x-288}{6\sqrt{8x+1}+18}+\frac{16x-16}{4\sqrt{x+3}+8}\)
\(\Leftrightarrow9\left(x-1\right)-\frac{288\left(x-1\right)}{6\sqrt{8x+1}+18}-\frac{16\left(x-1\right)}{4\sqrt{x+3}+8}=0\)
\(\Leftrightarrow\left(x-1\right)\left(9-\frac{288}{6\sqrt{8x+1}+18}-\frac{16}{4\sqrt{x+3}+8}\right)=0\)
Suy ra x=1 là nghiệm duy nhất
Em thử nha,sai thì thôi ạ.
2/ ĐK: \(-2\le x\le2\)
PT \(\Leftrightarrow\sqrt{2x+4}-\sqrt{8-4x}=\frac{6x-4}{\sqrt{x^2+4}}\)
Nhân liên hợp zô: với chú ý rằng \(\sqrt{2x+4}+\sqrt{8-4x}>0\) với mọi x thỏa mãn đk
PT \(\Leftrightarrow\frac{6x-4}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{6x-4}{\sqrt{x^2+4}}=0\)
\(\Leftrightarrow\left(6x-4\right)\left(\frac{1}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{1}{\sqrt{x^2+4}}\right)=0\)
Tới đây thì em chịu chỗ xử lí cái ngoặc to rồi..
1.\(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)
ĐK \(x\ge-1\)
Nhân liên hợp ta có
\(\left(x+3-x-1\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)
<=>\(x^2+\sqrt{\left(x+1\right)\left(x+3\right)}=x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)
<=> \(\left(x^2-x\sqrt{x+3}\right)+\left(\sqrt{\left(x+1\right)\left(x+3\right)}-x\sqrt{x+1}\right)=0\)
<=> \(\left(x-\sqrt{x+3}\right)\left(x-\sqrt{x+1}\right)=0\)
<=> \(\orbr{\begin{cases}x=\sqrt{x+3}\\x=\sqrt{x+1}\end{cases}}\)
=> \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)
Vậy \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)
\(=\frac{1}{2}\left(2+\sqrt{4+2\sqrt{3}}\right)\left(2-\sqrt{4-2\sqrt{3}}\right)\)
\(=\frac{1}{2}\left(2+\sqrt{\left(\sqrt{3}+1\right)^2}\right)\left(2-\sqrt{\left(\sqrt{3}-1\right)^2}\right)\)
\(=\frac{1}{2}\left(2+\sqrt{3}+1\right)\left(2-\sqrt{3}+1\right)\)
\(=\frac{1}{2}\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)=3\)
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
\(x\ge-\frac{2}{3}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{3x+4}=a>0\\\sqrt{3x+2}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=2\)
Pt trở thành:
\(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)
\(\Leftrightarrow\left(a-b\right)\left(1+ab\right)-\left(a-b\right)\left(a+b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(1+ab-a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left[a\left(b-1\right)-\left(b-1\right)\right]=0\)
\(\Leftrightarrow\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=1\\b=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+4}=\sqrt{3x+2}\\\sqrt{3x+4}=1\\\sqrt{3x+2}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}4=2\left(vn\right)\\x=-1< -\frac{2}{3}\left(l\right)\\x=-\frac{1}{3}\end{matrix}\right.\)
Nguyễn Việt Lâm y như siêu nhân