K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2016

\(\left(\frac{3}{4}-2x\right)\left(\frac{-3}{5}+\frac{2}{-31}-\frac{17}{51}\right)\le0\)

\(\Leftrightarrow\)\(\frac{3}{4}-2x\ge0\) ( Vì: \(\frac{-3}{5}+\frac{2}{-31}-\frac{17}{51}< 0\) )

\(\Leftrightarrow-2x\le-\frac{3}{4}\)

\(\Leftrightarrow x\ge\frac{3}{2}\)

4 tháng 8 2021

Bài này bạn làm sai rồi nhé!

 

12 tháng 7 2019

a) \(\left(x-1\right)\left(x-2\right)>0\)

=> \(\hept{\begin{cases}x-1>0\\x-2>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-1< 0\\x-2< 0\end{cases}}\)

=> \(\hept{\begin{cases}x>1\\x>2\end{cases}}\) hoặc \(\hept{\begin{cases}x< 1\\x< 2\end{cases}}\)

=> \(1< x< 2\)

b) 2x - 3 < 0

=> 2x < 3

=> x < 3/2

c) \(\left(2x-4\right)\left(9-3x\right)>0\)

=> 2(x - 2). 3(3 - x) > 0

=> (x - 2)(3 - x) > 0

=> \(\hept{\begin{cases}x-2>0\\3-x>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-2< 0\\3-x< 0\end{cases}}\)

=> \(\hept{\begin{cases}x>2\\x< 3\end{cases}}\) hoặc \(\hept{\begin{cases}x< 2\\x>3\end{cases}}\)

=>  2 < x < 3

11 tháng 9 2016

a)\(\left(2x-3\right)\left(x+1\right)< 0\)

\(\Leftrightarrow\begin{cases}2x-3>0\\x+1< 0\end{cases}\)  hoặc \(\begin{cases}2x-3< 0\\x+1>0\end{cases}\)

\(\Leftrightarrow\begin{cases}x>\frac{3}{2}\\x< -1\end{cases}\) (loại)  hoặc \(\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)

\(\Leftrightarrow-1< x< \frac{3}{2}\)

b) \(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)

\(\Leftrightarrow\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\) hoặc \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)

\(\Leftrightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\) hoặc \(\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x>\frac{1}{2}\\x< -3\end{array}\right.\)

c) Sai đề phải là \(\frac{x}{\left(x+3\right)\left(x+7\right)}\)

Có: \(\frac{3}{\left(x+3\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+3\right)\left(x+17\right)}\)

\(\Leftrightarrow\)\(\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+7}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)

\(\Leftrightarrow\)\(\frac{1}{x+3}-\frac{1}{x+7}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)

\(\Leftrightarrow\)\(\frac{4}{\left(x+3\right)\left(x+7\right)}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)

\(\Leftrightarrow x=4\)

11 tháng 9 2016

đề dúng đấy , bạn làm sai rồi

12 tháng 9 2016

Bài 1:

a) (2x-3). (x+1) < 0

=>2x-3 và x+1 ngược dấu

Mà 2x-3<x+1 với mọi x

\(\Rightarrow\begin{cases}2x-3< 0\\x+1>0\end{cases}\)

\(\Rightarrow\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)\(\Rightarrow-1< x< \frac{3}{2}\)

b)\(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)

\(\Rightarrow x-\frac{1}{2}\) và x+3 cùng dấu

Xét \(\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\)\(\Rightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\)

Xét \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)\(\Rightarrow\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)

=>....

Bài 2:

\(S=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{999.1001}\right)\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{999}-\frac{1}{1001}\right)\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{1001}\right)\)

\(=\frac{1}{2}\cdot\frac{998}{3003}\)

\(=\frac{499}{3003}\)

 

 

13 tháng 9 2016

tự làm nhé. bài cô Kiều cho dễ mừ :)

27 tháng 6 2019

Những câu từ D trở đi là các câu riêng biệt ak bạn

2 tháng 7 2019

\(A = {1\over2}-{3\over4}+{5\over6}-{7\over12}={6\over12}-{9\over12}+{10\over12}-{7\over12}\)\(={0\over12}=0\)

21 tháng 9 2018

a)   -1/2x +3/7=2/3x-1/2

=>-1/2x-2/3x=-1/2-3/7

=>-7/6x=-13/14

=>x=-39/49

21 tháng 9 2018

b) (x-5)18+(y+4)20

bài này đề là sao vậy mih ko hiểu

30 tháng 11 2017

a, x = 0 ; y = 1/10

b, x = 10 ; y = 1/2 hoặc y = -1/2

k mk nha

30 tháng 11 2017

1, \(x^2+\left(y-\frac{1}{10}\right)^4=0\)          (1)

Ta thấy \(x^2\ge0;\left(y-\frac{1}{10}\right)^4\ge0\)với mọi x,y nên \(x^2+\left(y-\frac{1}{10}\right)^4\ge0\)với mọi x,y              (2)

Từ (1) và (2) suy ra 

\(\hept{\begin{cases}x^2=0\\y-\frac{1}{10}=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=\frac{1}{10}\end{cases}}}\)

2, \(\left(\frac{1}{2}x-5\right)^{20^2}+\left(y^2-\frac{1}{4}\right)^{10}\le0\) (1)

Ta thấy \(\left(\frac{1}{2}x-5\right)^{20}\ge0\Rightarrow\left(\frac{1}{2}x-5\right)^{20^2}\ge0\)với mọi x

\(\left(y^2-\frac{1}{4}\right)^{10}\ge0\)với mọi y

Suy ra \(\left(\frac{1}{2}x-5\right)^{20^2}+\left(y^2-\frac{1}{4}\right)^{10}\ge0\)(2)

Từ (1) và (2) suy ra 

\(\hept{\begin{cases}\frac{1}{2}x-5=0\\y^2-\frac{1}{4}=0\end{cases}\Rightarrow\hept{\begin{cases}\frac{1}{2}x=5\\y^2=\frac{1}{4}\end{cases}\Rightarrow}\hept{\begin{cases}x=10\\y\in\left\{\frac{1}{2};-\frac{1}{2}\right\}\end{cases}}}\)

Vậy....

15 tháng 9 2016

Làm tiếp:

\(=\left(1+\frac{1}{2}+.....+\frac{1}{2017}\right)-\left(1+\frac{1}{2}+....+\frac{1}{1008}\right)\)

\(=\frac{1}{1009}+\frac{1}{1010}+.........+\frac{1}{2017}\)

\(\Rightarrow\frac{\frac{1}{1009}+....+\frac{1}{2017}}{1-\frac{1}{2}+.....+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}}=1\)

Bài 2:

Đặt \(A=\frac{1}{2^2}+.......+\frac{1}{2^{800}}\)

\(4A=1+\frac{1}{2^2}+.....+\frac{1}{2^{798}}\)

\(\Rightarrow4A-A=1-\frac{1}{2^{800}}\)

\(\Rightarrow3A=1-\frac{1}{2^{800}}< 1\Rightarrow A< \frac{1}{3}\)

Vậy \(\frac{1}{2^2}+\frac{1}{2^4}+........+\frac{1}{2^{800}}< \frac{1}{3}\)

15 tháng 9 2016

Bài 1:Tính

a,   Xét biểu thức \(\frac{\left(1+\frac{n}{1}\right)\left(1+\frac{n}{2}\right).........\left(1+\frac{n}{n+2}\right)}{\left(1+\frac{n+2}{1}\right)\left(1+\frac{n+2}{2}\right)..........\left(1+\frac{n+2}{n}\right)}\) với\(n\in N\)

Ta có:\(\frac{\left(1+\frac{n}{1}\right)\left(1+\frac{n}{2}\right).......\left(1+\frac{n}{n+2}\right)}{\left(1+\frac{n+2}{1}\right)\left(1+\frac{n+2}{2}\right)......\left(1+\frac{n+2}{n}\right)}\)

\(=\frac{\frac{n+1}{1}.\frac{n+2}{2}........\frac{2n+2}{n+2}}{\frac{n+3}{1}.\frac{n+4}{2}.........\frac{2n+2}{n}}\)

\(=\frac{\frac{\left(n+1\right)\left(n+2\right).......\left(2n+2\right)}{1.2.3.........\left(n+2\right)}}{\frac{\left(n+3\right)\left(n+4\right)........\left(2n+2\right)}{1.2.3.........n}}\)

\(=\frac{\left(n+1\right)\left(n+2\right).......\left(2n+2\right).1.2.3.......n}{\left(n+3\right)\left(n+4\right)........\left(2n+2\right).1.2.3......\left(n+2\right)}\)

\(=\frac{\left(n+1\right)\left(n+2\right)}{\left(n+1\right)\left(n+2\right)}=1\)

Áp dụng vào bài toán ta có đáp số là:1

b, \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}=\frac{\left(-6\right).\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}{9.\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}=\frac{-6}{9}=-\frac{2}{3}\)

c,\(\frac{\frac{1}{6}-\frac{1}{39}+\frac{1}{51}}{\frac{1}{8}-\frac{1}{52}+\frac{1}{68}}=\frac{\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{13}+\frac{1}{17}\right)}{\frac{1}{4}.\left(\frac{1}{2}-\frac{1}{13}+\frac{1}{17}\right)}=\frac{\frac{1}{3}}{\frac{1}{4}}=12\)

d,\(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)}{13\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)}=\frac{2}{13}\)

e,Xét mẫu số ta có:

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..........+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\)

\(=1+\frac{1}{2}-2.\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-2.\frac{1}{4}+.....+\frac{1}{2015}+\frac{1}{2016}-2.\frac{1}{2016}+\frac{1}{2017}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{2017}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+.........+\frac{1}{2016}\right)\)