K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 1 2024

Lời giải:

$x+my=2\Rightarrow x=2-my$. Thay vào PT(2):

$m(2-my)-2y=1$

$\Leftrightarrow 2m-y(m^2+2)=1$

$\Leftrightarrow y=\frac{2m-1}{m^2+2}$

$x=2-my=2-\frac{2m^2-m}{m^2+2}=\frac{m+4}{m^2+2}$

Vậy hpt có nghiệm $(x,y)=(\frac{m+4}{m^2+2}; \frac{2m-1}{m^2+2})$

Để $x<0; y>0$

$\Leftrightarrow \frac{m+4}{m^2+2}<0$ và $\frac{2m-1}{m^2+2}>0$

$\Leftrightarrow m+4<0$ và $2m-1>0$ (do $m^2+2>0$)

$\Leftrightarrow m< -4$ và $m> \frac{1}{2}$  (vô lý)

Do đó không tồn tại $m$ thỏa mãn đề.

NV
13 tháng 1 2024

Hệ có nghiệm duy nhất khi: \(\dfrac{1}{m}\ne\dfrac{m}{-2}\Rightarrow m^2\ne-2\) (luôn đúng)

\(\Rightarrow\) Hệ luôn có nghiệm duy nhất với mọi m

Khi đó: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x+2my=4\\m^2x-2my=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+2\right)x=m+4\\y=\dfrac{mx-1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+4}{m^2+2}\\y=\dfrac{4m-2}{2\left(m^2+2\right)}\end{matrix}\right.\)

Nghiệm hệ thỏa mãn x<0, y<0 \(\Rightarrow\left\{{}\begin{matrix}\dfrac{m+4}{m^2+2}< 0\\\dfrac{4m-2}{2\left(m^2+2\right)}< 0\end{matrix}\right.\) (1)

Do \(m^2+2>0;\forall m\) nên (1) tương đương:

\(\left\{{}\begin{matrix}m+4< 0\\4m-2< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< -4\\m< \dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow m< -4\)

3 tháng 1 2018

mọi người ơi giúp mình vs mai ktra r

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

Lời giải:

a)

Khi $m=2$ thì HPT trở thành:

\(\left\{\begin{matrix} x+2y=3\\ 2x+y=-3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2x+4y=6\\ 2x+y=-3\end{matrix}\right.\)

\(\Rightarrow (2x+4y)-(2x+y)=9\)

\(\Leftrightarrow 3y=9\Rightarrow y=3\)

\(\Rightarrow x=3-2y=3-2.3=-3\)

Vậy HPT có nghiệm $(x,y)=(-3,3)$

b)

HPT \(\Leftrightarrow \left\{\begin{matrix} x+my=3\\ y=-3-mx\end{matrix}\right.\)\(\Rightarrow x+m(-3-mx)=3\)

\(\Leftrightarrow x(1-m^2)=3+3m(*)\)

Để hệ ban đầu có nghiệm duy nhất thì $(*)$ cũng phải có nghiệm $x$ duy nhất. Điều này xảy ra khi $1-m^2\neq 0\Leftrightarrow (1-m)(1+m)\neq 0\Leftrightarrow m\neq \pm 1$

Khi đó: $x=\frac{3+3m}{1-m^2}=\frac{3}{1-m}$

Để $x>0\Leftrightarrow \frac{3}{1-m}>0\Leftrightarrow 1-m>0\Leftrightarrow m< 1$

Vậy $m< 1$ và $m\neq -1$ .

12 tháng 2 2020

a) Thay m = -1 ta có:

\(\left\{{}\begin{matrix}-x-y=2\\3x-y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x=3\\x+y=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3}{4}\\y=\frac{-11}{4}\end{matrix}\right.\)

Vậy...

b) hpt \(\Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\3x+m\left(mx-2\right)=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+xm^2-2m=5\\y=mx-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(m^2+3\right)=2m+5\\y=mx-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{2m+5}{m^2+3}\\y=\frac{m\left(2m+5\right)}{m^2+3}-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{2m+5}{m^2+3}\\y=\frac{5m-6}{m^2+3}\end{matrix}\right.\)

\(x>0,y>0\Leftrightarrow\left\{{}\begin{matrix}2m+5>0\\5m-6>0\end{matrix}\right.\)\(\Leftrightarrow m>\frac{6}{5}\)

Vậy...

14 tháng 2 2020

Bạn có thể giải chi tiết phần a ko ạ

8 tháng 2 2017

Đại số lớp 9

Vậy với m>-1 thì hpt có nghiệm thỏa x>0; y>0

30 tháng 3 2020
https://i.imgur.com/aJeNGvv.jpg
30 tháng 3 2020
https://i.imgur.com/Yj5IyiZ.jpg
24 tháng 1 2018

Bài 1:

Để hpt đã cho vô nghiệm thì m = 1 (lật sách trang 25 là hiểu)

Bài 2 :

Để hpt đã cho có vô số nghiệm thì m = 1