K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2020

\(\Leftrightarrow\left\{{}\begin{matrix}-2x+5y=-5\\2x+3y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8y=0\\2x+3y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=0\end{matrix}\right.\)

27 tháng 2 2020

thay x=3; y=1 vào hệ phương trình ta có:

\(\left\{{}\begin{matrix}2x+ay=b+4\\ax+by=8+9a\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}6+a=b+4\\3a+b=8+9a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b-a=2\\b-6a=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5a=-6\\b-a=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\frac{6}{5}\\b=\frac{4}{5}\end{matrix}\right.\)

vậy a=-6/5; b=4/5 thì hệ phương trình có nghiệm x=3;y=1

26 tháng 2 2020

- Thay x = 1, y = 1 vào hệ phương trình ta được :\(\left\{{}\begin{matrix}2+b=-4\\b-a=-5\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}b=-4-2=-6\\-6-a=-5\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}b=-6\\-a=-5+6=1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}b=-6\\a=-1\end{matrix}\right.\)

Vậy giá trị của a, b lần lượt là -1, -6 .


3 tháng 1 2018

mọi người ơi giúp mình vs mai ktra r

Bài 2:

a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)

=>-4x-2y=3 và 8x+2y=-2

=>x=1/4; y=-2

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)

=>y=6 và x-2=5/4

=>x=13/4; y=6

c: =>x+y=24 và 3x+y=78

=>-2x=-54 và x+y=24

=>x=27; y=-3

d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)

=>y+2=1 và x-1=25

=>x=26; y=-1

NV
15 tháng 3 2019

1/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge2\\y\ge-1\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x\le2\\y\le-1\end{matrix}\right.\)

Cộng vế với vế ta được:

\(x-2+y+1-2\sqrt{\left(x-2\right)\left(y+1\right)}=0\) (1)

- Nếu \(\left\{{}\begin{matrix}x\ge2\\y\ge-1\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left(\sqrt{x-2}-\sqrt{y+1}\right)^2=0\Rightarrow\sqrt{x-2}=\sqrt{y+1}\Leftrightarrow x=y+3\)

Thay vào pt dưới:

\(-2\left(y+3\right)+y^2+y=6\Leftrightarrow y^2-y-12=0\Rightarrow\left\{{}\begin{matrix}y=4\\x=7\end{matrix}\right.\)

- Nếu \(\left\{{}\begin{matrix}x\le2\\y\le-1\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2-x+\left(-y-1\right)+2\sqrt{\left(2-x\right)\left(-y-1\right)}=0\)

\(\Leftrightarrow\left(\sqrt{2-x}+\sqrt{-y-1}\right)^2=0\Leftrightarrow\left\{{}\begin{matrix}2-x=0\\-y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

Thay vào pt dưới ta thấy ko thỏa mãn \(\Rightarrow\) loại

Vậy hệ có cặp nghiệm duy nhất \(\left(x;y\right)=\left(7;4\right)\)

NV
15 tháng 3 2019

2/ \(x^4+2x^2y+y^2=4x^2y+y-4\Leftrightarrow\left(x^2+y\right)^2=4x^2y+y-4\)

Thay pt trên vào dưới:

\(16x^2=4x^2y+y-4\Leftrightarrow4x^2\left(y-4\right)+y-4=0\)

\(\Leftrightarrow\left(y-4\right)\left(4x^2+1\right)=0\Leftrightarrow y-4=0\)

\(\Rightarrow y=4\Rightarrow x^2+4=4x\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy hệ có cặp nghiệm duy nhất: \(\left(x;y\right)=\left(2;4\right)\)

27 tháng 2 2020

- Thay x = 3, y = 1 vào hệ phương trình trên ta được :

\(\left\{{}\begin{matrix}6+a=b+4\\3a+b=8+9a\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}a=b+4-6\\3a+b-9a=8\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}a=b-2\\b-6\left(b-2\right)=8\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}a=b-2\\b-6b+12=8\end{matrix}\right.\)

=> ​​\(\left\{{}\begin{matrix}a=b-2\\-5b=-4\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}a=\frac{4}{5}-2=-\frac{6}{5}\\b=\frac{4}{5}\end{matrix}\right.\)

Vậy ( a, b ) = \(\left(-\frac{6}{5},\frac{4}{5}\right)\) để hệ phương trình có nghiệm là x = 3, y = 1 .

12 tháng 1 2018

mình không ghi lại đề nhé với lại bạn xem câu 1 chỗ -2x + 5 hay 5x ạ ?\(1.\left\{{}\begin{matrix}-6x+15y=15\\6x-8y=9\end{matrix}\right. }< =>\left\{{}\begin{matrix}7y=24\\6x-8y=9\end{matrix}\right.< =>\left\{{}\begin{matrix}y=\dfrac{24}{7}\\6x-8\left(\dfrac{24}{7}\right)=9\end{matrix}\right.< =>\left\{{}\begin{matrix}y=\dfrac{24}{7}\\x=\dfrac{85}{14}\end{matrix}\right.\)

12 tháng 1 2018

Hỏi đáp ToánHỏi đáp Toán