Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)
\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)
\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)
Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)
Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)
2. Không thấy m nào ở hệ?
3. Bạn tự giải câu a
b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)
Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)
Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)
\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)
\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)
\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu
4.
\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)
- Với \(m=1\) hệ có vô số nghiệm
- Với \(m=-1\) hệ vô nghiệm
- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:
\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)
mk sẽ hướng dẩn nha.
phần a của 2 câu : tương tự nhé https://hoc24.vn/hoi-dap/question/621828.html
1b) thế \(x=-1;y=3\) --> m
1c) rút x và y theo m rồi thế vào giải
\(\left\{{}\begin{matrix}x+my=9\\mx-3y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9-my\\9m-m^2y-3y=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=9-my\\y=\dfrac{9m-4}{m^2+3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=9+\dfrac{4m+27}{m^2+3}\\y=\dfrac{9m-4}{m^2+3}\end{matrix}\right.\) --> ...
2b) tương tự rút x và y theo m và biện luận
\(\left\{{}\begin{matrix}3x-my=-9\\mx+2y=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{my-9}{3}\\m^2y-9m+6y=48\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{my-9}{3}\\y=\dfrac{9m+48}{m^2+6}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{\dfrac{9m^2+48m}{m^2+6}-9}{3}\\y=\dfrac{9m+48}{m^2+6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-18m}{m^2+6}\\y=\dfrac{9m+48}{m^2+6}\end{matrix}\right.\) --> ...
3c) từ \(x+y=7\Rightarrow y=7-x\) thế vào hệ ta được hệ pt 2 ẩn --> m
mình giải tắt nhé vì mình không giỏi dùng công thức. Thông cảm nha.
1.
\(\left\{{}\begin{matrix}3x-y=2m+3\\x+y=3m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m}{4}+1\\y=\dfrac{-5m}{4}\end{matrix}\right.\)
vậy phương trình có nghiệm duy nhất là \(\left(\dfrac{m}{4}+1;\dfrac{-5m}{4}\right)\)
Thay vào đẳng thức ta được:
\(\left(\dfrac{m}{4}+1\right)^2+\left(\dfrac{-5m}{4}\right)^2=5\\ \Leftrightarrow x=\)
hệ có nghiệm duy nhất <=> \(\dfrac{\left(m+1\right)}{m}\ne\dfrac{-1}{1}\Leftrightarrow\dfrac{m+1}{m}\ne-1\Leftrightarrow m+1\ne-m\\ \Leftrightarrow2m\ne-1\Leftrightarrow m\ne-\dfrac{1}{2}\)
vậy \(m\ne-\dfrac{1}{2}\) thì hệ có nghiệm duy nhất là x=\(\dfrac{3+m}{2m+1}\) và y=\(\dfrac{m^2-2m}{2m+1}\)
x+y>0 <=> \(\dfrac{3+m}{2m+1}+\dfrac{m^2-2m}{2m+1}>0\Leftrightarrow\dfrac{m^2-m+3}{2m+1}>0\)(*)
vì \(m^2-m+3=m^2-2\cdot\dfrac{1}{2}m+\dfrac{1}{4}+\dfrac{11}{4}=\left(m-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0,\forall m\)nên (*) <=> 2m+1>0 <=> m>-1/2
Bài 1.
\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)
\(x_0^2+y_0^2=9m\)
\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)
\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)
\(\Leftrightarrow2m^2-7m+5=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )
\(HPT\Leftrightarrow\left\{{}\begin{matrix}y=2x-3\\x+2mx-3m=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2x-3\\x\left(2m+1\right)=3m+1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3m+1}{2m+1}\\y=\dfrac{6m+2-6m-3}{2m+1}=\dfrac{-1}{2m+1}\end{matrix}\right.\)
Ta có \(mx+3y=1\Leftrightarrow\dfrac{3m^2+m}{2m+1}-\dfrac{3}{2m+1}=1\Leftrightarrow3m^2+m-3=2m+1\)
\(\Leftrightarrow3m^2-m-4=0\\ \Leftrightarrow\left[{}\begin{matrix}m=\dfrac{4}{3}\\m=-1\end{matrix}\right.\)
nếu \(m=-\dfrac{1}{2}\) thì sao mà để phân số đc ?