Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x+2y=5\Leftrightarrow x=5-2y$. Thay vô pt $(1)$
$m(5-2y)+y=4$
$\Leftrightarrow y(1-2m)=4-5m$
Để pt có nghiệm duy nhất thì $1-2m\neq 0\Leftrightarrow m\neq \frac{1}{2}$
Khi đó: $y=\frac{4-5m}{1-2m}$
$x=5-2y=5-\frac{2(4-5m)}{1-2m}=\frac{-3}{1-2m}$
$x>0\Leftrightarrow \frac{-3}{1-2m}>0\Leftrightarrow 1-2m<0\Leftrightarrow m> \frac{1}{2}(1)$
$y>0\Leftrightarrow \frac{4-5m}{1-2m}>0\Leftrightarrow 4-5m<0$ (do $1-2m< 0$
$\Leftrightarrow m> \frac{4}{5}(2)$
Từ $(1); (2)\Rightarrow m> \frac{4}{5}$
$x> y\Leftrightarrow \frac{-3}{1-2m}> \frac{4-5m}{1-2m}$
$\Leftrightarrow \frac{5m-7}{1-2m}>0$
$\Leftrightarrow 5m-7< 0$ (do $1-2m<0$)
$\Leftrightarrow m< \frac{7}{5}$
Vậy $\frac{4}{5}< m< \frac{7}{5}$
Lời giải:
$x+2y=5\Leftrightarrow x=5-2y$. Thay vô pt $(1)$
$m(5-2y)+y=4$
$\Leftrightarrow y(1-2m)=4-5m$
Để pt có nghiệm duy nhất thì $1-2m\neq 0\Leftrightarrow m\neq \frac{1}{2}$
Khi đó: $y=\frac{4-5m}{1-2m}$
$x=5-2y=5-\frac{2(4-5m)}{1-2m}=\frac{-3}{1-2m}$
$x>0\Leftrightarrow \frac{-3}{1-2m}>0\Leftrightarrow 1-2m<0\Leftrightarrow m> \frac{1}{2}(1)$
$y>0\Leftrightarrow \frac{4-5m}{1-2m}>0\Leftrightarrow 4-5m<0$ (do $1-2m< 0$
$\Leftrightarrow m> \frac{4}{5}(2)$
Từ $(1); (2)\Rightarrow m> \frac{4}{5}$
$x> y\Leftrightarrow \frac{-3}{1-2m}> \frac{4-5m}{1-2m}$
$\Leftrightarrow \frac{5m-7}{1-2m}>0$
$\Leftrightarrow 5m-7< 0$ (do $1-2m<0$)
$\Leftrightarrow m< \frac{7}{5}$
Vậy $\frac{4}{5}< m< \frac{7}{5}$
\(\left\{{}\begin{matrix}2x+y=m\\3x-2y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x+2y=2m\\3x-2y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=2m+5\\y=m-2x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+5}{7}\\y=\dfrac{3m-10}{7}\end{matrix}\right.\)
Để \(x>0;y< 0\Rightarrow\left\{{}\begin{matrix}\dfrac{2m+5}{7}>0\\\dfrac{3m-10}{7}< 0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m>-\dfrac{5}{2}\\m< \dfrac{10}{3}\end{matrix}\right.\) \(\Rightarrow-\dfrac{5}{2}< m< \dfrac{10}{3}\)
1: Để hệ có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{-2}{-1}=2\)
=>\(m\ne\dfrac{1}{2}\)
\(\left\{{}\begin{matrix}x-2y=5\\mx-y=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-2y=5\\y=mx-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2\left(mx-4\right)=5\\y=mx-4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(1-2m\right)=5-8=-3\\y=mx-4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{3}{2m-1}\\y=\dfrac{3m}{2m-1}-4=\dfrac{3m-4\left(2m-1\right)}{2m-1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{3}{2m-1}\\y=\dfrac{-5m+4}{2m-1}\end{matrix}\right.\)
Để x,y trái dấu thì xy<0
=>\(\dfrac{3\left(-5m+4\right)}{\left(2m-1\right)^2}< 0\)
=>-5m+4<0
=>-5m<-4
=>\(m>\dfrac{4}{5}\)
2: Để x=|y| thì \(\dfrac{3}{2m-1}=\left|\dfrac{-5m+4}{2m-1}\right|\)
=>\(\left[{}\begin{matrix}\dfrac{-5m+4}{2m-1}=\dfrac{3}{2m-1}\\\dfrac{-5m+4}{2m-1}=\dfrac{-3}{2m-1}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}-5m+4=3\\-5m+4=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{1}{5}\left(nhận\right)\\m=\dfrac{7}{5}\left(nhận\right)\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}\left(m-1\right)x-y=2\\mx+y=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)x+mx=2+m\\mx+y=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(2m-1\right)=m+2\\mx+y=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+2}{2m-1}\\y=m-mx=m-m\cdot\dfrac{m+2}{2m-1}=m-\dfrac{m^2+2m}{2m-1}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+2}{2m-1}\\y=\dfrac{2m^2-m-m^2-2m}{2m-1}=\dfrac{m^2-3m}{2m-1}\end{matrix}\right.\)
Để x+y>0 thì \(\dfrac{m+2}{2m-1}+\dfrac{m^2-3m}{2m-1}>0\)
\(\Leftrightarrow\dfrac{m+2+m^2-3m}{2m-1}>0\)
\(\Leftrightarrow\dfrac{m^2-2m+2}{2m-1}>0\)
mà \(m^2-2m+2>0\forall m\)
nên 2m-1>0
\(\Leftrightarrow2m>1\)
hay \(m>\dfrac{1}{2}\)
Vậy: Để hệ phương trình có nghiệm duy nhất thỏa mãn x+y>0 thì \(m>\dfrac{1}{2}\)
hệ có nghiệm duy nhất <=> \(\dfrac{\left(m+1\right)}{m}\ne\dfrac{-1}{1}\Leftrightarrow\dfrac{m+1}{m}\ne-1\Leftrightarrow m+1\ne-m\\ \Leftrightarrow2m\ne-1\Leftrightarrow m\ne-\dfrac{1}{2}\)
vậy \(m\ne-\dfrac{1}{2}\) thì hệ có nghiệm duy nhất là x=\(\dfrac{3+m}{2m+1}\) và y=\(\dfrac{m^2-2m}{2m+1}\)
x+y>0 <=> \(\dfrac{3+m}{2m+1}+\dfrac{m^2-2m}{2m+1}>0\Leftrightarrow\dfrac{m^2-m+3}{2m+1}>0\)(*)
vì \(m^2-m+3=m^2-2\cdot\dfrac{1}{2}m+\dfrac{1}{4}+\dfrac{11}{4}=\left(m-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0,\forall m\)nên (*) <=> 2m+1>0 <=> m>-1/2
Để hệ có nghiệm duy nhất thì \(\dfrac{2}{m}\ne\dfrac{-1}{1}=-1\)
=>\(m\ne-2\)
\(\left\{{}\begin{matrix}2x-y=1\\mx+y=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-y+mx+y=6\\2x-y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(m+2\right)=6\\y=2x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{6}{m+2}\\y=2\cdot\dfrac{6}{m+2}-1=\dfrac{12}{m+2}-1=\dfrac{12-m-2}{m+2}=\dfrac{-m+10}{m+2}\end{matrix}\right.\)
Để x>0 và y<0 thì \(\left\{{}\begin{matrix}\dfrac{6}{m+2}>0\\\dfrac{-m+10}{m+2}< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m+2>0\\\dfrac{m-10}{m+2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-2\\\left[{}\begin{matrix}m>10\\m< -2\end{matrix}\right.\end{matrix}\right.\)
=>m>10