K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2017

Ta có:

\(\left(4x-5\right)\left(4x+1\right)-4\left(x-1\right)\left(x+1\right)=7\)

\(\Rightarrow16x^2-16x-5-4\left(x^2-1\right)=7\)

\(\Rightarrow16x^2-16x-5-4x^2+4=7\)

\(\Rightarrow12x^2-16x=8\)

\(\Rightarrow3x^2-4x=2\)

\(\Rightarrow3\left(x^2-2.\frac{2}{3}.x+\left(\frac{2}{3}\right)^2\right)=2\)

\(\Rightarrow\left(x-\frac{2}{3}\right)^2=\frac{2}{3}\)

\(\Rightarrow\orbr{\begin{cases}x-\frac{2}{3}=\sqrt{\frac{2}{3}}\\x-\frac{2}{3}=-\sqrt{\frac{2}{3}}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=\sqrt{\frac{2}{3}}+\frac{2}{3}\\x=\frac{2}{3}-\sqrt{\frac{2}{3}}\end{cases}}\)

8 tháng 7 2017

len google di ban

mk chua hoc bai nay

31 tháng 10 2018

|5x-3| - 3x = 7

*Nếu \(x\ge\frac{3}{5}\)

5x - 3 - 3x = 7

2x = 10

x = 5 ( tm)

*Nếu \(x< \frac{3}{5}\)

3 - 5x - 3x = 7

-8x = 4 

x = \(-\frac{1}{2}\)( tm )

Làm hơi khó nhìn , thông cảm. Mệt rùi :)

31 tháng 10 2018

|x - 3| + |x - 5| - 4x = -28

*Nếu x < 3

3 - x + 5 - x - 4x = -28

-6x = -36

x = 6 ( loại do ko tm khoảng đang xét )

* nếu 3 < x < 5

x - 3 + 5 - x - 4x = -28

-4x = -30

x= \(\frac{15}{2}\) ( loại do ko tm khaongr đang xét )

*Nếu x > 5

x - 3 + x - 5 - 4x = -28

-2x = -20

x = 10 ( tm)

Vậy x =10

15 tháng 12 2017

\(\left(4x+1\right)\left(x-3\right)-\left(x-7\right)\left(4x-1\right)=15\)

\(4x^2-11x-3-\left(4x^2-29x+7\right)=15\)

\(4x^2-11x-3-4x^2+29x-7=15\)

\(18x-10=15\)

\(x=\frac{25}{18}\)

1: =>3x+2=x+1 hoặc 3x+2=-x-1

=>2x=-1 hoặc 4x=-3

=>x=-1/2 hoặc x=-3/4

2: =>|x+2|(|x|-1|)=0

=>x=-2; x=1; x=-1

3: \(\Leftrightarrow\left\{{}\begin{matrix}x>=-1\\\left(2x+3+x+1\right)\left(2x+3-x-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-1\\\left(3x+4\right)\left(x+2\right)=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

AH
Akai Haruma
Giáo viên
3 tháng 11 2019

Lời giải:
a)

\((4x-1)^2+(3x+1)^2+2(4x-1)(3x+1)\)

\(=(4x-1)^2+2(4x-1)(3x+1)+(3x+1)^2\)

\(=[(4x-1)+(3x+1)]^2=(7x)^2=49x^2\)

b)

\((x^2+2)(x-5)+(x-5)(x^2+5x+25)\)

\(=(x-5)[(x^2+2)+(x^2+5x+25)]\)

\(=(x-5)(2x^2+5x+27)\)

a, Thay B(x) = 0 nên (x + 1/2) . (x-3) = 0

nên x + 1/2 = 0 hoặc x-3 = 0

vậy x = -1/2 và x = 3

Đa thức B(x) có 2 nghiệm là x1=-1/2 và x2=3

b, Thay D(x) = 0 nên x2 - x = 0 => x.(x-1) = 0

Vậy x = 0 hoặc x = 1

Đa thức D(x) có 2 nghiệm là x1= 0 và x= 1

c, Thay E(x) = 0

nên x3 + 8 = 0 => x3 = -8 => x = -2

Vậy đa thức E(x) có 1 nghiệm là x = -2

d, Thay F(x) =  0 nên 2x - 5 + (x-17) = 0

=> 2x - 5 + x - 17 = 0

=> 3x -22 = 0

=> 3x = 22

x = 22/3

Vậy đa thức F(x) có 1 nghiệm là x = 22/3

e, Thay C(x) = 0 nên x- 9 = 0

x2 = 9 => x = 3 hoặc x = -3

Vậy đa thức C(x) có 2 nghiệm là x1= 3 và x2=-3

f, Thay A(x) = 0 nên x2 - 4x = 0

=> x.(x - 4) = 0

=> x = 0 và x = 4

Vậy đa thức A(x) có 2 nghiệm là x1=0 và x= 4

g, Thay H(x)= 0 nên (2x+4).(7-14x) = 0

Vậy 2x + 4 = 0 và 7-14x =0

=> x = -2 và x = 1/2

Vậy đa thức H(x) có 2 nghiệm là x1=-2 và x2 = 1/2

h, G(x) = 0 nên (3x-5) - (18-6x) = 0

=> 3x - 5 - 18 + 6x = 0

=> 9x - 23 = 0

=> 9x = 23

x = 23/9

Vậy đa thức này có 1 nghiệm là x = 23/9 

7 tháng 6 2020

a) B(x) = \(\left(x+\frac{1}{2}\right)\left(x-3\right)\)

B(x) = 0 <=> \(\left(x+\frac{1}{2}\right)\left(x-3\right)=0\)

             <=> \(\orbr{\begin{cases}x+\frac{1}{2}=0\\x-3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{2}\\x=3\end{cases}}\)

Vậy nghiệm của B(x) là -1/2 và 3

b) D(x) = \(x^2-x\)

D(x) = 0 <=> \(x^2-x=0\)

              <=> \(x\left(x-1\right)=0\)

              <=> \(\orbr{\begin{cases}x=0\\x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy nghiệm của D(x) là 0 và 1

c) E(x) = \(x^3+8\)

E(x) = 0 <=> x3 + 8 = 0

             <=> x3 = -8

             <=> x3 = -23

             <=> x = 3

Vậy nghiệm của E(x) là 3

d) F(x) = 2x - 5 + ( x - 17 )

F(x) = 0 <=> 2x - 5 + ( x - 17 ) = 0

             <=> 2x + x + ( -5 - 17 ) = 0

             <=> 3x - 22 = 0

             <=> 3x = 22

             <=> x = 22/3

Vậy nghiệm của F(x) là 22/3

f) A(x) = x2 - 4x 

A(x) = 0 <=> x2 - 4x = 0 

             <=> x( x - 4 ) = 0

             <=> \(\orbr{\begin{cases}x=0\\x-4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

Vậy nghiệm của A(x) là 0 và 4

g) H(x) = ( 2x + 4 )( 7 - 14x )

H(x) = 0 <=> ( 2x + 4 )( 7 - 14x )

              <=> \(\orbr{\begin{cases}2x+4=0\\7-14x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}2x=-4\\14x=7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2\\x=\frac{1}{2}\end{cases}}\)

Vậy nghiệm của H(x) là -2 và 1/2

h) G(x) = ( 3x - 5 ) - ( 18 - 6x )

G(x) = 0 <=> ( 3x - 5 ) - ( 18 - 6x ) = 0 

              <=> 3x - 5 - 18 + 6x = 0

              <=> 3x - 23 = 0

              <=> 3x = 23 

              <=> x = 23/3

Vậy nghiệm của G(x) là 23/3

15 tháng 6 2016

a,Ta có:

\(\left|4x-\frac{7}{3}\right|\ge0\Rightarrow\left|4x-\frac{7}{3}\right|+2004\ge2004\)

Dấu "=" xảy ra \(\Leftrightarrow\left|4x-\frac{7}{3}\right|=0\Leftrightarrow4x-\frac{7}{3}=0\Leftrightarrow4x=\frac{7}{3}\Leftrightarrow x=\frac{7}{12}\)

b,Ta có:

\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|+\left|4-x\right|\ge x-1+x-2+3-x+4-x=4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\4-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le4\end{cases}\)\(\Leftrightarrow2\le x\le3\)

15 tháng 6 2016

Câu C sai đề

A=\(\left|4x-\frac{7}{3}\right|+2004\ge2004\)

Dấu "=" xảy ra khi: x=7/12

Vậy GTNN của A là 2004 tại x=7/12