Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x-5\right)^{100}\ge0;\left(2y+1\right)^{200}\ge0\)
\(\Rightarrow\left(3x-5\right)^{10}+\left(2y+1\right)^{200}\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}3x-5=0\\2y+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{1}{2}\end{cases}}\)
\(\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}\le0\)
Ta có:
\(\left|3x-5\right|\ge0\)
\(\left(2y+5\right)^{208}\ge0\)
\(\left(4z-3\right)^{20}\ge0\)
\(\Rightarrow\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}\ge0\)
\(\Rightarrow\left|3x-5\right|+\left(2y+5\right)^{208}+\left(4z-3\right)^{20}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|3x-5\right|=0\\\left(2y+5\right)^{208}=0
\\\left(4z-3\right)^{20}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x-5=0\\2y+5=0\\4z-3=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x=5\\2y=-5\\4z=3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=-\dfrac{5}{2}\\z=\dfrac{3}{4}\end{matrix}\right.\)
Vậy \(x=\dfrac{5}{3};y=-\dfrac{5}{2};z=\dfrac{3}{4}\)
\(\hept{\begin{cases}\left(3x-5\right)^{100}\ge0\\\left(2y+3\right)^{200}\ge0\end{cases}}\)\(\Rightarrow\left(3x-5\right)^{100}+\left(2y+3\right)^{200}\ge0\)
Kết hợp với giả thiết:\(\hept{\begin{cases}\left(3x-5\right)^{100}=0\\\left(2y+3\right)^{200}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3x-5=0\\2y+3=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3x=5\\2y=-3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{3}{2}\end{cases}}\)
\(\frac{1}{3}.3^n+5.3^{n-1}=162\)
<=> \(3^{n-1}+5.3^{n-1}=162\)
<=> \(3^{n-1}\left(1+5\right)=162\)
<=> \(3^{n-1}.6=162\)
<=> \(3^{n-1}=162:6\)
<=> \(3^{n-1}=27\)
<=> \(3^{n-1}=3^3\)
<=> n - 1 = 3
<=> n = 3 + 1 = 4
Câu 1
a) Từ gt=>\(\hept{\begin{cases}x-5=1-3x\\x-5=3x-1\end{cases}}\)
<=>\(\hept{\begin{cases}4x=6\\2x=-4\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{3}{2}\\x=-2\end{cases}}\)
b) Ta có: \(\hept{\begin{cases}\left(3x-1\right)^{100}\ge0,\forall x\in R\\\left(2y+1\right)^{200}\ge0,\forall x\in R\end{cases}}\)
Kết hợp với đề bài => \(\hept{\begin{cases}3x-1=0\\2y+1=0\end{cases}}\)
=>\(\hept{\begin{cases}x=\frac{1}{3}\\y=-\frac{1}{2}\end{cases}}\)
Bài 2
\(\frac{1}{3}.3^n+5.3^{n-1}=162\)
<=>\(3^{n-1}+5.3^{n-1}=162\)
<=>\(6.3^{n-1}=162\)
<=>\(3^{n-1}=27=3^3\)
<=>\(n-1=3\)
<=>\(n=4\)
a) |-x + 2| = -|y + 9|
=> |-x + 2| + |y + 9| = 0
Ta có: |-x + 2| \(\ge\)0 \(\forall\)x
|y + 9| \(\ge\)0 \(\forall\)y
=> |-x + 2| + |y + 9| \(\ge\)0 \(\forall\)x; y
Dấu "=" xảy ra khi : \(\hept{\begin{cases}-x+2=0\\y+9=0\end{cases}}\) => \(\hept{\begin{cases}x=2\\y=-9\end{cases}}\)
Vậy ...
b) |3x + 4| + |2y - 10| \(\le\)0
Ta có: |3x + 4| \(\ge\)0 \(\forall\)x
|2y - 10| \(\ge\)0 \(\forall\)y
=> |3x + 4| + |2y - 10| \(\ge\) 0 \(\forall\)x;y
Dấu "=" xảy ra khi : \(\hept{\begin{cases}3x+4=0\\2y-10=0\end{cases}}\) <=> \(\hept{\begin{cases}3x=-4\\2y=10\end{cases}}\) <=> \(\hept{\begin{cases}x=-\frac{4}{3}\\y=5\end{cases}}\)
vậy ...
c) |-x - 3| + |y + 7| < 0
Ta có: |-x - 3| \(\ge\)0 \(\forall\)x
|y + 7| \(\ge\)0 \(\forall\)y
=> |-x - 3| + |y + 7| \(\ge\)0 \(\forall\)x; y
=> ko có giá trị x, y thõa mãn đb
Bài 1:
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
= \(\left(\frac{1}{5}-3\right)x^4y^3\)
= \(-\frac{14}{5}x^4y^3.\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
= \(\left(5-\frac{1}{4}\right)x^2y^5\)
= \(\frac{19}{4}x^2y^5.\)
Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.
Chúc bạn học tốt!
Ta có: \(\left|3x+2y\right|\ge0\) và \(\left|4y-1\right|\ge0\)
Nên: \(\left|3x+2y\right|+\left|4y-1\right|\le0\) khi:
\(\left\{{}\begin{matrix}3x+2y=0\\4y-1=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x+2y=0\\4y=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x+2y=0\\y=\dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x+2\cdot\dfrac{1}{4}=0\\y=\dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{6}\\y=\dfrac{1}{4}\end{matrix}\right.\)
Vậy (x;y) thỏa mãn là: \(\left(-\dfrac{1}{6};\dfrac{1}{4}\right)\)