Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2016}\right)\)
\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{2015}{2016}\)
\(A=\frac{2.3.4.....2015}{2.3.4.....2015}.\frac{1}{2016}\)
\(A=\frac{1}{2016}\)
Vậy \(A=\frac{1}{2016}\)
Chúc bạn học tốt ~
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)..\left(1-\frac{1}{2016}\right)\)
\(\Rightarrow A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2015}{2016}\)
\(\Rightarrow A=\frac{1.2.3..2015}{2.3.4..2016}\)
\(\Rightarrow A=\frac{1}{2016}\)
Ta có:\(\left(x-1\right)\left(x+1\right)=x\left(x-1\right)+x-1^2=x^2-x+x-1=x^2-1\)
Áp dụng:\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{2014^2}-1\right)\)
\(=\frac{2^2-1}{2^2}\cdot\frac{3^2-1}{3^2}\cdot...\cdot\frac{2014^2-1}{2014\cdot2014}\)
\(=\frac{1\cdot3}{2^2}\cdot\frac{2\cdot4}{3^2}\cdot...\cdot\frac{2013\cdot2015}{2014^2}\)
\(=\frac{1}{2}\cdot\frac{2015}{2014}=\frac{2015}{4028}\)
\(M=1+1,5+2+2,5+...+1007,5\)
\(M=\frac{1007,5+1}{2}.2014=1015559,5\)
Lời giải:
$M=1+\frac{1}{2}.\frac{2(2+1)}{2}+\frac{1}{3}.\frac{3(3+1)}{2}+\frac{1}{4}.\frac{4(4+1)}{2}+....+\frac{1}{2014}.\frac{2014(2014+1)}{2}$
$=1+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{2015}{2}$
$=\frac{2+3+4+....+2015}{2}$
$=\frac{1+2+3+....+2015}{2}-\frac{1}{2}$
$=\frac{2015(2015+1)}{4}-\frac{1}{2}=\frac{2031119}{2}$
TA CÓ
y=1/2.2/3.3/4..............2013/2014.2014/2015
y=(1.2.3...............2014)/(2.3.4..............2015)
y=1/2015
NHẤT ĐỊNH SẼ CÓ PHÂN SỐ \(1-\frac{2014}{2014}=0\)
NÊN tích dãy số đó là 0
tk nha
\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{2014}\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{2015}{2014}\)
\(=\frac{2015}{2}\)
\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right)...\left(1+\frac{1}{2014}\right)\)
= \(\frac{3}{2}.\frac{4}{3}...\frac{2015}{2014}\)
= \(\frac{3.4...2015}{2.3...2014}\)
= \(\frac{2015}{2}\)