Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\dfrac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}\)
\(A=\dfrac{11.3^{29}-3^{30}}{2^2.3^{28}}\)
\(A=\dfrac{11.3^{29}-3^{29}.3}{2^2.3^{28}}\)
\(A=\dfrac{3^{29}.\left(11-3\right)}{2^2.3^{28}}\)
\(A=\dfrac{3^{29}.8}{2^2.3^{28}}\)
\(A=\dfrac{3.8}{4}=6\)
vậy \(A=6\)
b) \(B=\dfrac{\left(3.4.2^{16}\right)^2}{11.2^{13}.4^{11}-16^9}\)
\(B=\dfrac{3^2.\left(2^2\right)^2.\left(2^{16}\right)^2}{11.2^{13}.\left(2^2\right)^{11}-\left(2^4\right)^9}\)
\(B=\dfrac{3^2.2^4.2^{32}}{11.2^{13}.2^{22}-2^{36}}\)
\(B=\dfrac{3^2.2^{36}}{11.2^{35}-2^{35}.2}\)
\(B=\dfrac{3^2.2^{36}}{2^{35}.\left(11-2\right)}\)
\(B=\dfrac{3^2.2^{36}}{2^{35}.9}\)
\(B=\dfrac{3^2.2}{9}\)
\(B=\dfrac{9.2}{9}\)
\(B=2\)
vậy \(B=2\)
A=11.322.37-915/(2.314)2
A=11.329-915/22.328
A=11.329-(32)15/4.328
A=11.329-330/4.328
A=11.329-329.3/4.328
A=329.(11-3)/328.4
A=329.8/328.4
A=3.8/4
A=24/4
A=6
\(A=\frac{11\cdot3^{22}\cdot3^7-9^{15}}{\left(2\cdot3^{14}\right)^2}=6\)
\(B=\frac{\left(3\cdot4\cdot2^{16}\right)^2}{11\cdot2^{13}\cdot4^{11}-16^9}=2\)
\(C=\frac{4^5\cdot9^{4-2\cdot6^9}}{2^{10}\cdot3^8+6^8\cdot20}=0\)
A=\(\frac{11\cdot3^{22}\cdot3^7-9^{15}}{\left(2\cdot3^{14}\right)^2}=6\)
\(=\frac{11.3^{29}-3^{30}}{2^2.3^{28}}=\frac{3^{29}\left(11-3\right)}{2^2.3^{28}}=\frac{3^{29}.2^3}{2^2.3^{28}}=3.2=6.\)
\(\frac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}=\frac{11.3^{22}.3^7-\left(3^2\right)^{15}}{2^2.\left(3^{14}\right)^2}=\frac{11.3^{29}-3^{30}}{2^2.3^{28}}\)
\(=\frac{3^{29}\left(11-3\right)}{2^2.3^{28}}=\frac{3.8}{4}=\frac{24}{4}=6\)
Đáp số: \(6\)
\(a,\left(\frac{6^3-10.5^3}{6^2.3^3-15^2.5^2}.|x-2|\right):10=\left(1-\frac{1}{2}\right)....\left(1-\frac{1}{10}\right)\)
\(=\frac{1.2.3.4...9}{1.2.....10}=\frac{1}{10}\Leftrightarrow\frac{6^3-10.5^3}{6^2.3^3-15^2.5^2}.|x-2|=1\)
\(\Leftrightarrow\frac{6^2.6-2.5^4}{6^2.3^2-3^2.5^4}.|x-2|=1\Leftrightarrow|x-2|.\frac{2}{3}=1\Leftrightarrow|x-2|=\frac{3}{2}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{7}{2}\end{cases}}\)
\(\left(\frac{6^3-10,5^3}{6^2.3^3-15^2.5^2}.\left|x-2\right|\right):10=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{9}\right).\left(1-\frac{1}{10}\right)\)
\(=\frac{1.2.3.4...9}{1.2.....10}=\frac{1}{10}\)
\(\Leftrightarrow\frac{6^3-10,5^3}{6^2.3^3-15^2.5^2}.\left|x-2\right|=1\)
\(\Leftrightarrow\frac{6^2.6-2.5^4}{6^2.3^2-3^2.5^4}.\left|x-2\right|=1\)
\(\Leftrightarrow\left|x-2\right|.\frac{2}{3}=1\Leftrightarrow\left|x-2\right|=\frac{3}{2}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{7}{2}\end{cases}}\)
a) \(4\frac{5}{9}:\left(-\frac{5}{7}\right)+\frac{49}{9}:\left(-\frac{5}{7}\right)=\frac{41}{9}:\left(-\frac{5}{7}\right)+\frac{49}{9}:\left(-\frac{5}{7}\right)\)
\(=\frac{41}{9}\cdot\left(-\frac{7}{5}\right)+\frac{49}{9}\cdot\left(-\frac{7}{5}\right)=\left(\frac{41}{9}+\frac{49}{9}\right)\cdot\left(-\frac{7}{5}\right)=10\cdot\left(-\frac{7}{5}\right)=-14\)
b) \(\left(\frac{-3}{5}+\frac{4}{9}\right):\frac{7}{11}+\left(\frac{-2}{5}+\frac{5}{9}\right):\frac{7}{11}\)
\(=\left(\frac{-3}{5}+\frac{4}{9}+\frac{-2}{5}+\frac{5}{9}\right):\frac{7}{11}\)
\(=\left(\frac{-3}{5}+\frac{-2}{5}+\frac{4}{9}+\frac{5}{9}\right):\frac{7}{11}\)
\(=\left(-1+1\right):\frac{7}{11}=0\cdot\frac{11}{7}=0\)
c) \(\left(\frac{3}{4}\right)^4\cdot\left(\frac{8}{9}\right)^2=\left(\frac{3}{4}\right)^2\cdot\left(\frac{3}{4}\right)^2\cdot\left(\frac{8}{9}\right)^2=\left(\frac{3}{4}\cdot\frac{3}{4}\cdot\frac{8}{9}\right)^2\)
\(=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)
d) \(\left(-\frac{3}{5}\right)^6\cdot\left(-\frac{5}{3}\right)^5=\left(-\frac{3}{5}\right)^5\cdot\left(-\frac{3}{5}\right)\cdot\left(-\frac{5}{3}\right)^5=\left[\left(-\frac{3}{5}\right)\cdot\left(-\frac{5}{3}\right)\right]^5\cdot\left(-\frac{3}{5}\right)\)
\(=1^5\cdot\left(-\frac{3}{5}\right)=1\cdot\left(-\frac{3}{5}\right)=-\frac{3}{5}\)
e) \(\frac{8^{14}}{4^4\cdot64^5}=\frac{\left(2^3\right)^{14}}{\left(2^2\right)^4\cdot\left(2^6\right)^5}=\frac{2^{42}}{2^8\cdot2^{30}}=\frac{2^{42}}{2^{38}}=2^4=16\)
f) \(\frac{9^{10}\cdot27^7}{81^7\cdot3^{15}}=\frac{\left(3^2\right)^{10}\cdot\left(3^3\right)^7}{\left(3^4\right)^7\cdot3^{15}}=\frac{3^{20}\cdot3^{21}}{3^{28}\cdot3^{15}}=\frac{3^{41}}{3^{43}}=3^{-2}=\frac{1}{3^2}=\frac{1}{9}\)
a ) \(\frac{15}{2}-\left(-\frac{7}{3}\right)-\frac{7}{3}-10\)
= \(\frac{15}{2}+\frac{7}{3}-\frac{7}{3}-10\)
=\(\frac{15}{2}-10\)
= \(\frac{-5}{2}\)
b ) \(\frac{65}{2}+\left(-\frac{65}{3}\right)-\frac{130}{3}\)
= \(\frac{65}{6}-\frac{130}{3}\)
=\(\frac{-65}{2}\)
c ) \(\left(\frac{-16}{3}\right)+\left(\frac{-2}{3}\right)\)
= -6
d ) \(\frac{1}{7}+\frac{9}{-8}+\left(-\frac{3}{14}\right)\)
= \(\frac{-55}{56}+\left(-\frac{3}{14}\right)\)
= \(\frac{-67}{56}\)
e ) - 1,8 +\(\frac{5}{-6}\)
= \(\frac{-79}{30}\)
\(=\dfrac{11\cdot3^{21}-3^{30}}{2^2\cdot3^{28}}=\dfrac{3^{21}\left(11-3^7\right)}{2^2\cdot3^{28}}=\dfrac{-2176}{2^2\cdot3^7}=\dfrac{-2176}{8748}=\dfrac{-544}{2187}\)