K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2019

Chọn C.


28 tháng 3 2019


Chọn D

1 tháng 3 2017

NV
17 tháng 12 2018

Gọi chiều cao của lon sữa là \(h\), bán kính đáy là R

Ta có \(V=\pi R^2h\Rightarrow h=\dfrac{V}{\pi R^2}\)

Lon sữa sẽ tốn ít nguyên liệu nhất khi diện tích toàn phần của lon sữa là nhỏ nhất

\(S_{tp}=2\pi R^2+2\pi Rh=2\pi R^2+2\pi R.\dfrac{V}{\pi R^2}=2\pi R^2+\dfrac{2V}{R}\)

Xét hàm \(f\left(R\right)=2\pi R^2+\dfrac{2V}{R}\Rightarrow f'\left(R\right)=4\pi R-\dfrac{2V}{R^2}\)

\(f'\left(R\right)=0\Rightarrow4\pi R-\dfrac{2V}{R^2}=0\Rightarrow R^3=\dfrac{V}{2\pi}\Rightarrow R=\sqrt[3]{\dfrac{V}{2\pi}}\)

Dựa vào BBT ta thấy hàm \(f\left(R\right)\) đạt cực tiểu tại \(R=\sqrt[3]{\dfrac{V}{2\pi}}\)

Vậy diện tích toàn phần nhỏ nhất của lon sữa là:

\(S_{tp}=2\pi R^2+\dfrac{2V}{R}=2\pi\sqrt[3]{\dfrac{V^2}{4\pi^2}}+2V.\sqrt[3]{\dfrac{2\pi}{V}}=6\sqrt[3]{\dfrac{\pi V^2}{4}}\)

Đáp án A

3 tháng 8 2017

Đáp án A

1 tháng 4 2017

Theo công thức ta có:

Sxq = 2πrh = 2√3 πr2

Stp = 2πrh + 2πr2 = 2√3 πr2 + 2 πr2 = 2(√3 + 1)πr2 ( đơn vị thể tích)

b) Vtrụ = πR2h = √3 π r3

c) Giả sử trục của hình trụ là O1O2 và A nằm trên đường tròn tâm O1, B nằm trên đường tròn tâm O2; I là trung điểm của O1O2, J là trung điểm cảu AB. Khi đó IJ là đường vuông góc chung của O1O2 và AB. Hạ BB1 vuông góc với đáy, J1 là hình chiếu vuông góc của J xuống đáy.

Ta có là trung điểm của , = IJ.

Theo giả thiết = 300.

do vậy: AB1 = BB1.tan 300 = = r.

Xét tam giác vuông

AB1 = BB1.tan 300 = O1J1A vuông tại J1, ta có: = - .

Vậy khoảng cách giữa AB và O1O2 :


AH
Akai Haruma
Giáo viên
11 tháng 7 2017

Lời giải:

Thiết diện là một tam giác đều cạnh \(a\sqrt{3}\) nên \(2R=\sqrt{3}a\Rightarrow R=\frac{\sqrt{3}a}{2}\)

Do đó diện tích xq của hình nón là:

\(S_{xq}=\pi Rl=\frac{3a^2}{2}\pi\)

Đáp án C