K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

I. Trắc nghiệm (3 điểm): Hãy khoanh tròn vào trước các đáp án đúng.Câu 1: Kết quả của phép nhân: 3x2y.(3xy – x2 + y) là:A) 3x3y2 – 3x4y – 3x2y2 B) 9x3y2 – 3x4y + 3x2y2C) 9x2y – 3x5 + 3x4 D) x – 3y + 3x2 Câu 2: Kết quả của phép nhân (x – 2).(x + 2) là: A) x2 – 4 B) x2 + 4 C) x2 – 2 D) 4 - x2 ...
Đọc tiếp

I. Trắc nghiệm (3 điểm): Hãy khoanh tròn vào trước các đáp án đúng.

Câu 1: Kết quả của phép nhân: 3x2y.(3xy – x2 + y) là:

A) 3x3y2 – 3x4y – 3x2y2 B) 9x3y2 – 3x4y + 3x2y2

C) 9x2y – 3x5 + 3x4 D) x – 3y + 3x2

Câu 2: Kết quả của phép nhân (x – 2).(x + 2) là:

A) x2 – 4 B) x2 + 4 C) x2 – 2 D) 4 - x2

Câu 3: Giá trị của biểu thức x + 2x + 1 tại x = -1 là:

A) 4 B) -4 C) 0 D) 2

Câu 4: Kết quả khai triển của hằng đẳng thức (x + y)3 là:

A) x2 + 2xy + y2 B) x3 + 3x2y + 3xy2 + y3

C) (x + y).(x2 – xy + y2) D) x3 - 3x2y + 3xy2 - y3

Câu 5: Kết quả của phép chia (20x4y – 25x2y2 – 5x2y) : 5x2y là:

A) 4x2 – 5y + xy B) 4x2 – 5y – 1

C) 4x6y2 – 5x4y3 – x4y2 D) 4x2 + 5y - xy

Câu 6: Đẳng thức nào sau đây là Sai:

A) (x - y)3 = x3 - 3x2y + 3xy2 - y3 B) x3 – y3 = (x - y)(x2 - xy + y2) C) (x - y)2 = x2 - 2xy + y2 D) (x - 1)(x + 1) = x2 - 1

II. Tự luận (7 điểm)

Câu 1 ( 1 điểm): Rút gọn biểu thức P = (x - y)2 + (x + y)2 – 2.(x + y)(x – y) – 4x2

Câu 2 (3 điểm): Phân tích các đa thức sau thành nhân tử:

a/ x3 – x2y + 3x – 3y

b/ x3 – 2x2 – 4xy2 + x

c/ (x + 2)(x+3)(x+4)(x+5) – 8

Câu 3 (2 điểm): Làm tính chia:(x4 – x3 – 3x2 + x + 2) : (x2 – 1)

Câu 4 (1 điểm): Cho x, y là 2 số khác nhau thoả mãn x2 – y = y2 – x. Tính giá trị của biểu thức A = x3 + y3 + 3xy(x2 + y2) + 6x2y2(x + y).

help mekhocroi

2
23 tháng 10 2016

Đại số lớp 8

Vậy (x^4 - x^3 - 3x^2 + x + 2) = (x^2 - x - 1)(x^2 - 1) + 1

23 tháng 10 2016

Đại số lớp 8

Đại số lớp 8

\(P=\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)-4x^2=\left(x-y-x-y\right)^2-\left(2x\right)^2=\left(-2y\right)^2-\left(2x\right)^2\)

\(=\left(2y-2x\right)\left(2y+2x\right)=2\left(y-x\right)2\left(y+x\right)=4\left(x+y\right)\left(y-x\right)\)

\(x^3-x^2y+3x-3y=x^2\left(x-y\right)+3\left(x-y\right)=\left(x-y\right)\left(x^2+3\right)\)

\(x^3-2x^2-4xy^2+x=x\left(x^2-2x+1-4y^2\right)=x\left[\left(x-1\right)^2-\left(2y\right)^2\right]=x\left(x+2y-1\right)\left(x-2y-1\right)\)

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)

Đặt \(x^2+7x+10=t\), ta có:

\(t\left(t+2\right)-8=t^2+2t-8=t^2-2t+4t-8=t\left(t-2\right)+4\left(t-2\right)=\left(t-2\right)\left(t+4\right)\)

\(=\left(x^2+7x+10+4\right)\left(x^2+7x+10-2\right)=\left(x^2+7x+14\right)\left(x^2+7x-8\right)\)

NV
3 tháng 5 2019

\(A=\left(x+y\right)^2-2xy=25-12=13\)

\(B=\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]=5\left(25-18\right)=35\)

\(C=x^2-y^2\Rightarrow C^2=x^4+y^4-2x^2y^2=\left(x^2+y^2\right)^2-4x^2y^2\)

\(C^2=\left[\left(x+y\right)^2-2xy\right]^2-4\left(xy\right)^2=\left(25-12\right)^2-4.36=25\Rightarrow C=\pm5\)

\(D=\frac{x^2+y^2}{xy}=\frac{\left(x+y\right)^2-2xy}{xy}=\frac{25-12}{6}=\frac{13}{6}\)

3 tháng 5 2019

x + y = 5 ⇔ x = 5-y

x.y =6⇔ x(5 - x)=6

⇔ -x2 + 5x - 6 = 0 ⇒\(\left\{{}\begin{matrix}x=2\Rightarrow y=3\\x=3\Rightarrow y=2\end{matrix}\right.\)

thế vô từng trường hợp

a) Ta có: \(A=x^3+6x^2+12x+8\)

\(=x^3+3\cdot x^2\cdot2+3\cdot x\cdot2^2+2^3\)

\(=\left(x+2\right)^3\)

Thay x=8 vào biểu thức \(A=\left(x+2\right)^3\), ta được:

\(A=\left(8+2\right)^3=10^3=1000\)

Vậy: 1000 là giá trị của biểu thức \(A=x^3+6x^2+12x+8\) tại x=8

b) Ta có: \(B=x^3-3x^2+3x-1\)

\(=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3\)

\(=\left(x-1\right)^3\)

Thay x=101 vào biểu thức \(B=\left(x-1\right)^3\), ta được:

\(B=\left(101-1\right)^3=100^3=1000000\)

Vậy: 1000000 là giá trị của biểu thức \(B=x^3-3x^2+3x-1\) tại x=101

c) Ta có: \(C=\left(\frac{x}{2}-y\right)^3-6\left(y-\frac{x}{2}\right)^2-12\left(y-\frac{x}{2}\right)-8\)

\(=\left(\frac{x}{2}-y\right)^3-6\cdot\left(\frac{x}{2}-y\right)^2+12\cdot\left(\frac{x}{2}-y\right)-8\)

\(=\left(\frac{x}{2}-y-2\right)^3\)

Thay x=4 và y=2 vào biểu thức \(C=\left(\frac{x}{2}-y-2\right)^3\), ta được:

\(C=\left(\frac{4}{2}-2-2\right)^3=\left(2-2-2\right)^3=\left(-4\right)^3=-64\)

Vậy: -64 là giá trị của biểu thức \(C=\left(\frac{x}{2}-y\right)^3-6\left(y-\frac{x}{2}\right)^2-12\left(y-\frac{x}{2}\right)-8\) tại x=4 và y=2

1 tháng 7 2021

Trả lời:

a, \(\left(3\sqrt{x}-y\right)\left(3\sqrt{x}+y\right)=\left(3\sqrt{x}\right)^2-y^2=9x-y^2\)

b, \(\left(\sqrt{x}-2\sqrt{y}\right)\left(2\sqrt{y}+\sqrt{x}\right)=\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+2\sqrt{y}\right)=\left(\sqrt{x}\right)^2-\left(2\sqrt{y}\right)^2\)

\(=x-4y\)

21 tháng 8 2018

a,

\(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2\cdot\left(-6\right)=1-\left(-12\right)=13\)

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=1\cdot\left[13-\left(-6\right)\right]=19\)

\(x^5+y^5=\left(x+y\right)\left(x^2+y^2\right)^2-\left(2x^3y^2+xy^4+x^4y+2x^2y^3\right)=169-\left[2\left(xy\right)^2\left(x+y\right)+xy\left(x^3+y^3\right)\right]=169-\left[2\cdot36\cdot1-6\cdot19\right]=211\)

21 tháng 8 2018

b,

\(x^2+y^2=\left(x-y\right)^2+2xy=1+12=13\)

\(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=1\cdot\left(13+6\right)=19\)

19 tháng 10 2018

Bài 1. Rút gọn:

\(a, x\left(1-x\right)+6\left(x+3\right)\left(x+3\right)\)

\(=x-x^2+6\left(x^2+6x+9\right)\)

\(=x-x^2+6x^2+36x+54\)

\(=5x^2+37x+54\)

\(b, \left(2-3x\right)\left(2+3x\right)-\left(x+5\right)\left(x-5\right)\)

\(=\left(4-9x^2\right)-\left(x^2-25\right)\)

\(=-10x^2+29\)

\(c, \left(3x+1\right)\left(x+5\right)-\left(x-1\right)\left(x+1\right)\)

\(=3x^2+15x+x+5-x^2+1\)

\(=2x^2+16x+6\)

\(d,\left(2-3x\right)\left(2x+3\right)+6\left(x-1\right)^2\)

\(=\left(4x+6-6x^2-9x\right)+6\left(x^2-2x+1\right)\)

\(=4x+6-6x^2-9x+6x^2-12x+6\)

\(=-17x+12\)

\(e, x\left(5-x\right)-\left(2x+2\right)\left(3x+2\right)-\left(x-2\right)\left(x+2\right)\)

\(=5x-x^2-\left(6x^2+4x+6x+4\right)-\left(x^2-4\right)\)

\(=5x-x^2-6x^2-4x-6x-4-x^2+4\)

\(=-8x^2-5x\)

25 tháng 10 2022

Bài 2: 

a: VT\(=x^3-xy+x^2y^2-y^3-x^3+y^3-x^2y^2\)

=-xy

b: \(VT=x^2+6xy+9y^2-x^2+9y^2-6xy=18y^2=VP\)

22 tháng 6 2017

\(A=\left(x+1\right)^3-\left(x+3\right)^2\left(x+1\right)+4x^2+8\)\(=\left(x+1\right)\left[\left(x+1\right)^2-\left(x+3\right)^2\right]+4x^2+8\)

\(=\left(x+1\right)\left(x+1+x+3\right)\left(x+1-x-3\right)+4x^2+8\)\(=\left(x+1\right)\left(2x+4\right).-2+4x^2+8=-2\left(2x^2+4x+2x+4\right)+4x^2+8=-4x^2-12x-8+4x^2+8=-12x\) Với \(x=\dfrac{-1}{6}\Rightarrow A=\left(-12\right).\left(\dfrac{-1}{6}\right)=2\)

a: \(A=x^3+3x^2+3x+1-\left(x^2+6x+9\right)\left(x+1\right)+4x^2+8\)

\(=x^3+7x^2+3x+9-x^3-x^2-6x^2-6x-9x-9\)

\(=-12x\)

\(=-12\cdot\dfrac{-1}{6}=2\)

b: Sửa đề: \(B=2\left(x^6+y^6\right)-3\left(x^4+y^4\right)\)

\(=2\left[\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)\right]-3\left(x^4+y^4\right)\)

\(=2x^4-2x^2y^2+2y^4-3x^4-3y^4\)

\(=-\left(x^4+2x^2y^2+y^4\right)=-1\)

10 tháng 11 2017

Câu 1:

\(\text{a) }\dfrac{x^2-xy}{3xy-3y^2}=\dfrac{x\left(x-y\right)}{3y\left(x-y\right)}=\dfrac{x}{3y}\)

\(\text{b) }\dfrac{2ax^2-4ax+2a}{5b-5bx^2}\\ =\dfrac{2a\left(x^2-2x+1\right)}{5b\left(1-x^2\right)}\\ =\dfrac{2a\left(x-1\right)^2}{5b\left(1-x\right)\left(1+x\right)}\\ =-\dfrac{2a\left(x-1\right)^2}{5b\left(x-1\right)\left(1+x\right)}\\ =-\dfrac{2a\left(x-1\right)}{5b\left(x+1\right)}\\ =-\dfrac{2ax-2a}{5bx+5b}\)

\(\text{c) }\dfrac{4x^2-4xy}{5x^3-5x^2y}=\dfrac{4x\left(x-y\right)}{5x^2\left(x-y\right)}=\dfrac{4}{5x}\)

\(\text{d) }\dfrac{\left(x+y\right)^2-z^2}{x+y+z}=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{x+y+z}=x+y-z\)

\(\text{e) }\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}\\ =\dfrac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}\\ =\dfrac{\left(x^3+y^3\right)^2}{x\left(x^3-y^3\right)\left(x+y\right)^3}\\ =\dfrac{x^3+y^3}{x\left(x^3-y^3\right)}\\ =\dfrac{x^3+y^3}{x^4-xy^3}\)

10 tháng 11 2017

Câu 3:

\(\text{ a) }\dfrac{\left(a+b\right)^2-c^2}{a+b+c}=\dfrac{\left(a+b+c\right)\left(a+b-c\right)}{a+b+c}=a+b-c\)

\(\text{b) }\dfrac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}\\ =\dfrac{\left(a^2+2ab+b^2\right)-c^2}{\left(a^2+2ac+c^2\right)-b^2}\\ =\dfrac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}\\ =\dfrac{\left(a+b+c\right)\left(a+b-c\right)}{\left(a+c+b\right)\left(a+c-b\right)}\\ =\dfrac{a+b-c}{a-b+c}\)

\(\text{c) }\dfrac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}\\ =\dfrac{2x^3-x^2-6x^2+3x-15x+45}{3x^3-10x^2-9x^2+3x+30x-9}\\ =\dfrac{\left(2x^3-x^2-15x\right)-\left(6x^2-3x-45\right)}{\left(3x^3-10x^2+3x\right)-\left(9x^2-30x+9\right)}\\ =\dfrac{x\left(2x^2-x-15\right)-3\left(2x^2-x-15\right)}{x\left(3x^2-10x+3\right)-3\left(3x^2-10x+3\right)}\\ =\dfrac{\left(x-3\right)\left(2x^2-x-15\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\\ =\dfrac{\left(x-3\right)\left(2x^2-6x+5x-15\right)}{\left(x-3\right)\left(3x^2-9x-x+3\right)}\\ =\dfrac{\left(x-3\right)\left[\left(2x^2-6x\right)+\left(5x-15\right)\right]}{\left(x-3\right)\left[\left(3x^2-9x\right)-\left(x-3\right)\right]}\\ =\dfrac{\left(x-3\right)\left[x\left(x-3\right)+5\left(x-3\right)\right]}{\left(x-3\right)\left[3x\left(x-3\right)-\left(x-3\right)\right]}\\ =\dfrac{\left(x-3\right)\left(x-3\right)\left(x+5\right)}{\left(x-3\right)\left(x-3\right)\left(3x-1\right)}\\ =\dfrac{x+5}{3x-1}\)