K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2023

a: \(M=2\left(x+5\right)^2+5\left(x-2\right)^2-7\left(x+3\right)\left(x-3\right)\)

\(=2\left(x^2+10x+25\right)+5\left(x^2-4x+4\right)-7\left(x^2-9\right)\)

\(=2x^2+20x+50+5x^2-20x+20-7x^2+63\)

\(=113\)

b: \(H=\left(2x-3y\right)^2-\left(3y-2\right)\left(3y+2\right)-\left(1-2x\right)^2+4x\left(3y-1\right)\)

\(=4x^2-12xy+9y^2+12xy-4x-\left(9y^2-4\right)-\left(4x^2-4x+1\right)\)

\(=4x^2+9y^2-4x-9y^2+4-4x^2+4x-1\)

=3

c: \(N=\left(2x+3y\right)^2+\left(3x-2y\right)^2-13\left(x+y\right)\left(x-y\right)-26\left(y+1\right)\left(y-1\right)\)

\(=4x^2+12xy+9y^2+9x^2-12xy+4y^2-13\left(x^2-y^2\right)-26\left(y^2-1\right)\)

\(=13x^2+13y^2-13x^2+13y^2-26y^2+26\)

=26

d: \(K=\left(x^2y-3\right)^2-\left(2x-y\right)^3+xy^2\left(6-x^3\right)+8x^3-6x^2y-y^3\)

\(=x^4y^2-6x^2y+9+6xy^2-x^4y^2+8x^3-6x^2y-y^3-\left(2x-y\right)^3\)

\(=-12x^2y+9-y^3+6xy^2+8x^3-\left(8x^3-12x^2y+6xy^2-y^3\right)\)

\(=\left(8x^3-12x^2y+6xy^2-y^3\right)-\left(8x^3-12x^2y+6xy^2-y^3\right)+9\)

=9

e: \(P=\left(4x+3\right)\left(16x^2-12x+9\right)-\left(-23+64x^3\right)\)

\(=\left(4x\right)^3+3^3+23-64x^3\)

\(=64x^3+27+23-64x^3\)

=50

h: \(Q=\left(x+5y\right)\left(x^2-5xy+25y^2\right)+\left(x-5y\right)\left(x^2+5xy+25y^2\right)-\dfrac{1}{2}\left(4x^3-7\right)\)

\(=x^3+125y^3+x^3-125y^3-2x^3+\dfrac{7}{2}\)

=7/2

19 tháng 12 2023

cảm on ạa

NV
10 tháng 3 2023

Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\Rightarrow xyz=1\) và \(x;y;z>0\)

Gọi biểu thức cần tìm GTNN là P, ta có:

\(P=\dfrac{1}{\dfrac{1}{x^3}\left(\dfrac{1}{y}+\dfrac{1}{z}\right)}+\dfrac{1}{\dfrac{1}{y^3}\left(\dfrac{1}{z}+\dfrac{1}{x}\right)}+\dfrac{1}{\dfrac{1}{z^3}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)}\)

\(=\dfrac{x^3yz}{y+z}+\dfrac{y^3zx}{z+x}+\dfrac{z^3xy}{x+y}=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)

\(P\ge\dfrac{\left(x+y+z\right)^2}{y+z+z+x+x+y}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\)

\(P_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\) hay \(a=b=c=1\)

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

\({x^2} = {4^2} + {2^2} = 20 \Rightarrow x = 2\sqrt 5 \)

\({y^2} = {5^2} - {4^2} = 9 \Leftrightarrow y = 3\)

\({z^2} = {\left( {\sqrt 5 } \right)^2} + {\left( {2\sqrt 5 } \right)^2} = 25 \Rightarrow z = 5\)

\({t^2} = {1^2} + {2^2} = 5 \Rightarrow t = \sqrt 5 \)

loading... 

1
NV
16 tháng 1 2024

a.

\(A=\left(\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x\left(x-1\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)

\(=\left(\dfrac{x^2+x+1}{x}+\dfrac{x+2}{x}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)

\(=\left(\dfrac{x^2+3x+1}{x}\right).\dfrac{x}{x+1}\)

\(=\dfrac{x^2+3x+1}{x+1}\)

2.

\(x^3-4x^3+3x=0\Leftrightarrow x\left(x^2-4x+3\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=1\left(loại\right)\\x=3\end{matrix}\right.\)

Với \(x=3\Rightarrow A=\dfrac{3^2+3.3+1}{3+1}=\dfrac{19}{4}\)

30 tháng 1 2024

4.linda sometimes brings her home made after the class

30 tháng 1 2024

Linh 6A3(THCS Mai Đình) à

 

 

AH
Akai Haruma
Giáo viên
3 tháng 2 2024

Bài 4:

a. Vì $\triangle ABC\sim \triangle A'B'C'$ nên:

$\frac{AB}{A'B'}=\frac{BC}{B'C'}=\frac{AC}{A'C'}(1)$ và $\widehat{ABC}=\widehat{A'B'C'}$

$\frac{DB}{DC}=\frac{D'B'}{D'C}$

$\Rightarrow \frac{BD}{BC}=\frac{D'B'}{B'C'}$

$\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}(2)$

Từ $(1); (2)\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}=\frac{AB}{A'B'}$

Xét tam giác $ABD$ và $A'B'D'$ có:

$\widehat{ABD}=\widehat{ABC}=\widehat{A'B'C'}=\widehat{A'B'D'}$

$\frac{AB}{A'B'}=\frac{BD}{B'D'}$

$\Rightarrow \triangle ABD\sim \triangle A'B'D'$ (c.g.c)

b.

Từ tam giác đồng dạng phần a và (1) suy ra:
$\frac{AD}{A'D'}=\frac{AB}{A'B'}=\frac{BC}{B'C'}$

$\Rightarrow AD.B'C'=BC.A'D'$

 

AH
Akai Haruma
Giáo viên
3 tháng 2 2024

Hình bài 4:

AH
Akai Haruma
Giáo viên
13 tháng 1 2024

Bạn cần hỗ trợ bài nào nhỉ?

19 tháng 12 2023

Ta có

\(BC\perp AB';B'C'\perp AB'\) => BC//B'C'

\(\Rightarrow\dfrac{AB}{AB'}=\dfrac{BC}{B'C'}\Rightarrow\dfrac{x}{x+h}=\dfrac{a}{a'}\)

\(\Rightarrow a'x=ax+ah\Rightarrow x\left(a'-a\right)=ah\Rightarrow x=\dfrac{ah}{a'-a}\left(dpcm\right)\)

30 tháng 9 2024

Xét tam giác ABCABC có BC⊥ AB′BC AB và B′C′⊥AB′BCAB nên suy ra BCBC // B′C′BC.

Theo hệ quả định lí Thalès, ta có: ABAB′ =BCBC′ABAB =BCBC

Suy ra xx+h =aa′x+hx =aa

a′.x=a(x+h)a.x=a(x+h)

a′.x−ax=aha.xax=ah

x(a′−a)=ahx(aa)=ah

x=aha′ −ax=a aah.