Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(A=\left(\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x\left(x-1\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)
\(=\left(\dfrac{x^2+x+1}{x}+\dfrac{x+2}{x}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)
\(=\left(\dfrac{x^2+3x+1}{x}\right).\dfrac{x}{x+1}\)
\(=\dfrac{x^2+3x+1}{x+1}\)
2.
\(x^3-4x^3+3x=0\Leftrightarrow x\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=1\left(loại\right)\\x=3\end{matrix}\right.\)
Với \(x=3\Rightarrow A=\dfrac{3^2+3.3+1}{3+1}=\dfrac{19}{4}\)
Bài 4:
a. Vì $\triangle ABC\sim \triangle A'B'C'$ nên:
$\frac{AB}{A'B'}=\frac{BC}{B'C'}=\frac{AC}{A'C'}(1)$ và $\widehat{ABC}=\widehat{A'B'C'}$
$\frac{DB}{DC}=\frac{D'B'}{D'C}$
$\Rightarrow \frac{BD}{BC}=\frac{D'B'}{B'C'}$
$\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}(2)$
Từ $(1); (2)\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}=\frac{AB}{A'B'}$
Xét tam giác $ABD$ và $A'B'D'$ có:
$\widehat{ABD}=\widehat{ABC}=\widehat{A'B'C'}=\widehat{A'B'D'}$
$\frac{AB}{A'B'}=\frac{BD}{B'D'}$
$\Rightarrow \triangle ABD\sim \triangle A'B'D'$ (c.g.c)
b.
Từ tam giác đồng dạng phần a và (1) suy ra:
$\frac{AD}{A'D'}=\frac{AB}{A'B'}=\frac{BC}{B'C'}$
$\Rightarrow AD.B'C'=BC.A'D'$
ĐKXĐ: \(\left|x-2\right|-1\ne0\)
\(\Rightarrow\left|x-2\right|\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}x-2\ne1\\x-2\ne-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\ne3\\x\ne1\end{matrix}\right.\)
c) \(\dfrac{1}{\left(1-x\right)\left(x-2\right)}+\dfrac{1}{\left(2-x\right)\left(x-3\right)}+...+\dfrac{1}{\left(99-x\right)\left(x-100\right)}\)
\(=-\dfrac{1}{\left(x-1\right)\left(x-2\right)}-\dfrac{1}{\left(x-2\right)\left(x-3\right)}-...-\dfrac{1}{\left(x-99\right)\left(x-100\right)}\)
\(=-\left[\dfrac{\left(x-1\right)-\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}+\dfrac{\left(x-2\right)-\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+...+\dfrac{\left(x-99\right)-\left(x-100\right)}{\left(x-99\right)\left(x-100\right)}\right]\)
\(=-\left(\dfrac{1}{x-2}-\dfrac{1}{x-1}+\dfrac{1}{x-3}-\dfrac{1}{x-2}+...+\dfrac{1}{x-100}-\dfrac{1}{x-99}\right)\)
\(=-\left(\dfrac{1}{x-100}-\dfrac{1}{x-1}\right)\)
\(=\dfrac{1}{x-1}-\dfrac{1}{x-100}\)
Bài 5:
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)
TH1: \(x=-y\):
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{-y}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{z}=\dfrac{1}{0+z}=\dfrac{1}{x+y+z}\)
Ta có đpcm.
Các trường hợp \(y=-z\) và \(z=-x\) tương tự.