Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\Rightarrow xyz=1\) và \(x;y;z>0\)
Gọi biểu thức cần tìm GTNN là P, ta có:
\(P=\dfrac{1}{\dfrac{1}{x^3}\left(\dfrac{1}{y}+\dfrac{1}{z}\right)}+\dfrac{1}{\dfrac{1}{y^3}\left(\dfrac{1}{z}+\dfrac{1}{x}\right)}+\dfrac{1}{\dfrac{1}{z^3}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)}\)
\(=\dfrac{x^3yz}{y+z}+\dfrac{y^3zx}{z+x}+\dfrac{z^3xy}{x+y}=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
\(P\ge\dfrac{\left(x+y+z\right)^2}{y+z+z+x+x+y}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\)
\(P_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\) hay \(a=b=c=1\)
\({x^2} = {4^2} + {2^2} = 20 \Rightarrow x = 2\sqrt 5 \)
\({y^2} = {5^2} - {4^2} = 9 \Leftrightarrow y = 3\)
\({z^2} = {\left( {\sqrt 5 } \right)^2} + {\left( {2\sqrt 5 } \right)^2} = 25 \Rightarrow z = 5\)
\({t^2} = {1^2} + {2^2} = 5 \Rightarrow t = \sqrt 5 \)
a.
\(A=\left(\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x\left(x-1\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)
\(=\left(\dfrac{x^2+x+1}{x}+\dfrac{x+2}{x}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)
\(=\left(\dfrac{x^2+3x+1}{x}\right).\dfrac{x}{x+1}\)
\(=\dfrac{x^2+3x+1}{x+1}\)
2.
\(x^3-4x^3+3x=0\Leftrightarrow x\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=1\left(loại\right)\\x=3\end{matrix}\right.\)
Với \(x=3\Rightarrow A=\dfrac{3^2+3.3+1}{3+1}=\dfrac{19}{4}\)
Bài 4:
a. Vì $\triangle ABC\sim \triangle A'B'C'$ nên:
$\frac{AB}{A'B'}=\frac{BC}{B'C'}=\frac{AC}{A'C'}(1)$ và $\widehat{ABC}=\widehat{A'B'C'}$
$\frac{DB}{DC}=\frac{D'B'}{D'C}$
$\Rightarrow \frac{BD}{BC}=\frac{D'B'}{B'C'}$
$\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}(2)$
Từ $(1); (2)\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}=\frac{AB}{A'B'}$
Xét tam giác $ABD$ và $A'B'D'$ có:
$\widehat{ABD}=\widehat{ABC}=\widehat{A'B'C'}=\widehat{A'B'D'}$
$\frac{AB}{A'B'}=\frac{BD}{B'D'}$
$\Rightarrow \triangle ABD\sim \triangle A'B'D'$ (c.g.c)
b.
Từ tam giác đồng dạng phần a và (1) suy ra:
$\frac{AD}{A'D'}=\frac{AB}{A'B'}=\frac{BC}{B'C'}$
$\Rightarrow AD.B'C'=BC.A'D'$
1. =2.5xy x x^2y-2/5xy x 5x + 2/5xy x 10y
=2.5x^3y^2-2x^2y+4xy^2
mấy câu khác tương tự=))
1)
a, \(\dfrac{2}{5}xy\left(x^2y-5x+10y\right)\)
\(=\left(\dfrac{2}{5}xy\cdot x^2y\right)-\left(\dfrac{2}{5}xy\cdot5x\right)+\left(\dfrac{2}{5}xy\cdot10y\right)\)
\(=\dfrac{2}{5}x^3y^2-2x^2y+4xy^2\)
b, \(2x\left(x-3\right)+\left(x-2\right)\left(5-2x\right)\)
\(=2x^2-6x+5x-2x^2-10+4x\)
\(=3x-10\)
2)
a, \(3x^2y\left(x^2-3y+2xy^2\right)\)
\(=\left(3x^2y\cdot x^2\right)-\left(3x^2y\cdot3y\right)+\left(3x^2y\cdot2xy^2\right)\)
\(=3x^4y-9x^2y^2+6x^3y^3\)
b, \(\left(x-1\right)\left(x+2020\right)-\left(x+2019\right)\)
\(=x^2+2020x-x-2020-x-2019\)
\(=x^2+2018x-4039\)
3)
a, \(9x^2y\left(xy-2y+7xy^2\right)\)
\(=\left(9x^2y\cdot xy\right)-\left(9x^2y\cdot2y\right)+\left(9x^2y\cdot7xy^2\right)\)
\(=9x^3y^2-18x^2y^2+63x^3y^3\)
b, \(\left(x+1\right)^2+\left(x-1\right)^2-\left(x-1\right)\left(x+1\right)\)
\(=\left(x^2+2x+1\right)+\left(x^2-2x+1\right)-\left(x^2-1\right)\)
\(=x^2+2x+1+x^2-2x+1-x^2+1\)
\(=x^2+3\)