Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử ta có hình thoi ABCD, hai đường chéo AC và BD cắt nhau tại O. Ta cắt hình thoi theo đường chéo AC ta được 2 tam giác.
Lấy AC làm một cạnh hình chữ nhật. Cắt tam giác BAC theo đường BO ta được hai tam giác ghép lại ta có hình chữ nhật.
A B C D I 3cm 5cm
Áp dụng Pi-ta-go vào tam giác vuông IAB, ta có: \(AB^2=AI^2+IB^2\)
\(\Rightarrow IB^2=AB^2-AI^2=25-9=16cm\)
\(\Rightarrow IB=4\left(cm\right)\)
\(AC=2AI=2.3=6\left(cm\right)\)
\(BD=2IB=2.4=8\left(cm\right)\)
\(S_{ABCD}=\frac{1}{2}AC.BD=\frac{1}{2}.6.8=24\left(cm^2\right)\)
Chúc bạn học tốt !!!
Áp dụng Pi-ta-go vào tam giác vuông IAB, ta có: A B 2 = A I 2 + I B 2
⇒ I B 2 = A B 2 - A I 2 = 25 – 9 = 16
⇒ IB = 4(cm).
AC = 2AI = 2.3 = 6 (cm)
BD = 2IB = 2.4 = 8 (cm)
S A B C D = 1/2 AC.BD = 1/2 .6.8 = 24 ( c m 2 )
Cắt một hình thoi theo đường kẻ xanh như hình vẽ trên, ta được 4 tam giác bằng nhau. Ghép 4 tam giác vào 4 góc của hình thoi còn lại như sau để được hình chữ nhật:
- Nhận xét:
+ Diện tích hình chữ nhật = 2 lần diện tích hình thoi
+ Hình chữ nhật có chiều dài và chiều rộng là 2 đường chéo của hìn thoi
=> Diện tích hình thoi = Diện tích hình chữ nhật : 2 = Tích 2 đường chéo của hình thoi : 2
a) Theo tính chất của hình bình hành, hai đường chéo của hình thoi có tính chất cắt nhau tại trung điểm mỗi đường
b) Xét ΔAOB và ΔCOB
AB = CB
BO chung
OA = OC ( O là trung điểm AC )
⇒ ΔAOB = ΔCOB (c.c.c)
⇒ (AOB) = (COB) ,(ABO) = (CBO) (các cặp góc tương ứng)
(ABO) = (CBO) ⇒ BO là phân giác góc ABC
(AOB) + (COB) = 180o ⇒(AOB) = (COB) = 180o : 2 = 90o
Chứng minh tương tự, ta kết luận được:
AC, BD là các đường phân giác của các góc của hình thang
và AC ⊥ BD tại O
Vì hình thoi có hai đường chéo vuông góc với nhau
Nên: Hình thoi có độ dài hai đường chéo lần lượt là d1 ,d2 ⇒ S = 1/2 d1d2