K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2016

Năng lượng liên kết riêng của \(_3^6Li\) là \(W_{lkr1}= \frac{(3.m_p+3.m_n-m_{Li})c^2}{6}=5,2009 MeV.\ \ (1)\)

Năng lượng liên kết riêng của \(_{18}^{40}Ar\) là \(W_{lkr2}= \frac{(18.m_p+22.m_n-m_{Ar})c^2}{40}= 8,6234MeV.\ \ (2)\)

Lấy (2) trừ đi (1) => \(\Delta W = 3,422MeV.\)

Của Ar lớn hơn của Li.

31 tháng 3 2017

B ơi mLi và mAr bằng bn thế?

29 tháng 2 2016

Ta có: 
Na : số Avogadro= 6,02.10^23 
khối lượng prôtôn là mp = 1,0073u 
khối lượng nơtrôn là mn = 1,0087u 

Gọi ∆m =(mo - m) là độ hụt khối 

mo: Tổng khối lượng của hạt riêng lẻ của 2 hột prôtôn và 2 hột nơtrôn 
mo = 2mp + 2mn = 2*1,0073u + 2*1,0087u = 4,032 u 

m: khối lượng He(4;2) 
m = 4,0015u 

Năng lượng ấy toả ra khi tạo thành 1 hạt nhân He(4;2) 

∆E = (mo - m)c² = ( 4,032u - 4,0015u)c² = 0,0305 uc² 

=> ∆E = 0,0305 * 931,4 = 28,4077 MeV (vì u = 931,4 MeV/c² ) 

Năng lượng tỏa ra khi các nuclon kết hợp với nhau tạo thành 1 mol khí Heli là : 

W = Na * ∆E = 6,02.10^23 * ( 28,4077) 1,6.10^-13 = 2,7.10^12 J 

22 tháng 3 2016

Năng lượng liên kết riêng của hạt nhân

\(W_{lkr}= \frac{W_{lk}}{A} = \frac{(Zm_p+(A-Z)m_n-m_{Be})c^2}{A}\)

                     \( = \frac{0,0679.931}{10}= 6,3215MeV.\)

10 tháng 4 2016

C. 6, 3215 MeV

12 tháng 3 2016

\(W_{lkr}= \frac{W_{lk}}{A}\)

Năng lượng liên kết riêng của các hạt nhân lần lượt là 1,11 MeV; 0,7075 MeV; 8,7857 MeV; 7,6 MeV.

Hạt nhân kém bền vững nhất là \(_2^4He\).

12 tháng 3 2016

\(W_{lkr}= \frac{W_{lk}}{A}\)

Năng lượng liên kết riêng của \(_1^2H\)\(_1^3H\)\(_2^4He\) lần lượt là 1,11 MeV; 2,83 MeV; 7,04 MeV.

Hạt nhân có  năng lượng liên kết riêng càng lớn thì càng bền vững 

=> Thứ tự giảm dẫn về độ bền vững là  \(_2^4He\)\(_1^3H\)\(_1^2H\).

20 tháng 3 2016

Nguyễn Quang Hưng chuẩn luôn

22 tháng 10 2016

\(x=A\sin(\omega t)+A\cos(\omega t)\)

\(=A\sin(\omega t)+A\sin(\omega t+\dfrac{\pi}{2})\)

\(=2A\sin(\omega t+\dfrac{\pi}{4}).\cos \dfrac{\pi}{4}\)

\(=A\sqrt 2\sin(\omega t+\dfrac{\pi}{4})\)

Vậy biên độ dao động là: \(A\sqrt 2\)

Chọn C.

22 tháng 10 2016

thanks nhìu

\(\Delta E=1783MeV;\frac{\Delta E}{A}=7,59MeV\)

6 tháng 8 2016

Hướng dẫn bạn:

- Lực kéo về: \(F=k.x=0,03\sqrt 2\pi\) (không biết có đúng như giả thiết của bạn không)

\(\Rightarrow x =\dfrac{0,03\sqrt 2\pi}{k}=\dfrac{0,03\sqrt 2\pi}{m.\omega^2}=\dfrac{0,03\sqrt 2\pi}{0,01.\omega^2}=\dfrac{3\sqrt 2\pi}{\omega^2}\)

- Áp dụng: \(A^2=x^2+\dfrac{v^2}{\omega^2}\)

\(\Rightarrow 0,05^2=(\dfrac{3\sqrt 2\pi}{\omega^2})^2+\dfrac{(0,4\pi)^2}{\omega^2}\)

Bạn giải pt trên tìm \(\omega \) và suy ra chu kì \(T\) nhé.

 

6 tháng 4 2016

\(\alpha + _7^{14}N \rightarrow _1^1p + _8^{17}O\)

\(m_t-m_s = m_{\alpha}+m_N - (m_{O}+m_p) =- 1,3.10^{-3}u < 0\), phản ứng thu năng lượng.

\(W_{thu} = (m_s-m_t)c^2 = K_t-K_s\)

=> \(1,3.10^{-3}.931,5 = K_{He}+K_N- (K_p+K_O)\)(do Nito đứng yên nên KN = 0)

=> \(K_p +K_O = 6,48905MeV. (1)\)

Áp dụng định luật bảo toàn động lượng

P P α P p O

\(\overrightarrow P_{\alpha} =\overrightarrow P_{p} + \overrightarrow P_{O} \)

Dựa vào hình vẽ ta có (định lí Pi-ta-go)

 \(P_{O}^2 = P_{\alpha}^2+P_p^2\)

=> \(2m_{O}K_{O} = 2m_{He}K_{He}+ 2m_pK_p.(2)\)

Từ (1) và (2) giải hệ phương trình ta được

\(K_p = 4,414MeV; K_O = 2,075 MeV.\)

 

 

 

28 tháng 11 2015

Nhiệt lượng tỏa ra: \(Q=I^2Rt\)

\(\Rightarrow9.10^5=I^2.10.30.60\)

\(\Rightarrow I=5\)

Biên độ dòng điện \(I_0=5\sqrt{2}\)(A)

28 tháng 11 2015

Bạn Trần Hoàng Sơn có chút nhầm lẫn, ta tìm đc \(I=5\sqrt{2}A\)

\(\Rightarrow I_0=\sqrt{2}I=10A\)

Chọn C.