K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2023

Công suất làm việc mỗi giờ của người thứ nhất, người thứ hai lần lượt là a,b (a,b>0)

Ta lập hpt:

\(\left\{{}\begin{matrix}4a+4b=1\\a+2b=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{6}\\b=\dfrac{1}{12}\end{matrix}\right.\)

Vậy nếu làm một mình người thứ nhất cần 6 giờ để hoàn thành công việc, người thứ hai cần đến 12 giờ để hoàn thành công việc đó.

17 tháng 4 2020

HHHHH dịch là ha ha ha ha ha

17 tháng 4 2020

minh moi hc lop 3

19 tháng 5 2022

Gọi người 1 , 2 làm trong k , t ngày thì xong công việc ( k,t>0 )

Ta có hệ pt \(\int^{\frac{2}{k}+\frac{5}{t}=\frac{1}{2}}_{\frac{3}{k}+\frac{3}{t}=1-\frac{1}{20}}\)

1 tháng 5 2017

Đổi : \(\frac{12}{5}\)=   \(2,4\)giờ 

Người thứ hai làm xong trong thời gian là :

( 2,4 - 2 ) : 2 = 0,2 giờ hay 12 phút 

Người thứ nhất làm xong trong thời gian là :

2,4 - 0,2 = 2,2 giờ hay 2 giờ 12 phút 

                Đ/s : người thứ nhất : 2 giờ 12 phút 

                        người thứ hai : 12 phút .

27 tháng 1 2017

biên luân ban tu lm nhe mk chi ghi hê pt ra thôi \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\\\frac{1}{x}-\frac{1}{y}=\frac{1}{2}\end{cases}}\)  ban tu giai nhe 

25 tháng 8 2016

Giả sử nếu làm riêng thì người thứ nhất hoàn thành công việc  trong x giờ, người thứ hai trong y giờ. Điều kiện x > 0, y > 0.

Trong 1 giờ người thứ nhất làm được \(\frac{1}{x}\) công việc, người thứ hai \(\frac{1}{y}\) công việc, cả hai người cùng làm chung thì được \(\frac{1}{16}\) công việc.

Ta được \(\frac{1}{x}+\frac{1}{y}=\frac{1}{16}\) +  = .

Trong 3 giờ, người thứ nhất làm được \(\frac{3}{x}\) công việc, trong 6 giờ người thứ hai làm được \(\frac{6}{y}\) công việc, cả hai người làm được 25% công việc hay \(\frac{1}{4}\) công việc.

Ta được \(\frac{3}{x}+\frac{6}{y}=\frac{1}{4}\)

Ta có hệ phương trình: \(\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{16}\\\frac{3}{x}+\frac{6}{y}=\frac{1}{4}\end{cases}\).

Giải ra ta được x = 24, y = 48.

Vậy người thứ nhất 24 giờ, người thứ hai 48 giờ

 

13 tháng 2 2019

Gọi thời gian người thứ nhất làm một mình để hoàn thành công việc là x (giờ) (x > 0).

Gọi thời gian người thứ hai làm một mình để hoàn thành công việc là y (giờ) y > 0).

Vì cả hai người cùng làm sẽ hoàn thành công việc trong 16 giờ nên ta có phương trình

\(16\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\)(1)

Vì người thứ nhất làm trong 3 giờ, người thứ hai làm trong 6 giờ thì hoàn thành \(25\%=\dfrac{1}{4}\) công việc nên ta có phương trình: \(3.\dfrac{1}{x}+6.\dfrac{1}{y}=\dfrac{1}{4}\)(2)

Từ (1) và (2) ta có hệ phương trình:\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\\3.\dfrac{1}{x}+6.\dfrac{1}{y}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3.\dfrac{1}{x}+3.\dfrac{1}{y}=\dfrac{3}{16}\\3.\dfrac{1}{x}+6.\dfrac{1}{y}=\dfrac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3.\dfrac{1}{y}=\dfrac{1}{16}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{48}\\\dfrac{1}{x}+\dfrac{1}{48}=\dfrac{1}{16}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{48}\\\dfrac{1}{x}=\dfrac{1}{24}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=48\left(TM\right)\\x=24\left(TM\right)\end{matrix}\right.\)

Vậy nếu làm riêng, người thứ nhất hoàn thành công việc sau 24 giờ và người thứ hai hoàn thành công việc trong 48 giờ.

24 tháng 6 2017

Gọi thời gian người thứ nhất làm riêng xong công việc là x(giờ)

Gọi thời gian người thứ hai làm riêng xong công việc là y(giờ)

Điều kiện: x; y > 0

Trong 1 giờ người thứ nhất làm được 1/x (công việc)

Trong 1 giờ người thứ hai làm được 1/y (công việc)

Vì hai người làm chung trong 15 giờ được 1/6 công việc nên ta có phương trình:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vì người thứ nhất làm một mình trong 12 giờ và người thứ hai làm một mình trong 20 giờ được 1/5 công việc nên ta có phương trình:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Từ (1) và (2) ta có hệ phương trình:

Vậy người thứ nhất làm riêng xong công việc trong 360 giờ; người thứ hai làm riêng xong công việc trong 120 giờ.

Gọi x(giờ) là thời gian người thứ nhất hoàn thành công việc khi làm một mình

y(giờ) là thời gian người thứ hai hoàn thành công việc khi làm một mình

(Điều kiện: x>15; y>15)

Trong 1 giờ, người thứ nhất làm được: \(\dfrac{1}{x}\)(công việc)

Trong 1 giờ, người thứ hai làm được: \(\dfrac{1}{y}\)(công việc)

Trong 1 giờ, hai người làm được: \(\dfrac{1}{15}\)(công việc)

Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{15}\)(1)

Vì nếu người thứ nhất làm trong 3 giờ và người thứ hai làm trong 5 giờ thì được 25% công việc nên ta có phương trình:

\(\dfrac{3}{x}+\dfrac{5}{y}=\dfrac{1}{4}\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{15}\\\dfrac{3}{x}+\dfrac{5}{y}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{1}{5}\\\dfrac{3}{x}+\dfrac{5}{y}=\dfrac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-2}{y}=\dfrac{-1}{20}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{15}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=40\\\dfrac{1}{x}=\dfrac{1}{15}-\dfrac{1}{40}=\dfrac{1}{24}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=24\\y=40\end{matrix}\right.\)(thỏa ĐK)

Vậy: Người thứ nhất cần 24 giờ để hoàn thành công việc khi làm một mình

Người thứ hai cần 40 giờ để hoàn thành công việc khi làm một mình