K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2017

Chọn C

e1ftEooUXBE1.png.

EbkhOIKkS4iK.png nên phương trình XxgUTRrA0iNn.png có 2 nghiệm phân biệt.

Do đó hàm số có hai điểm cực trị 7FVX1E2467Xu.png.

Giả sử hàm số có hai điểm cực trị lần lượt là sFKQzngptsvp.pngs0CDnjyFrOzx.png, với 5vdWVKJZw5pU.png, qGTln0eIliPI.png là nghiệm của phương trình JyHRgUS1O55R.png.

Thực hiện phép chia Rgsev2v8ZEoa.png cho uKHN1hNNqZVW.png ta được : Rk2pEvycrOyq.png.

Khi đó ta có: piT0phFGqD1I.png.

Ta thấy, toạ độ hai điểm RBRQaWsaCIGU.pngXOv4KaaBV9n7.png thoả mãn phương trình UiohljdazKXS.png.

Do đó, phương trình đường thẳng qua hai điểm cực trị là 25Ej1wjQut79.png.

Ta thấy Ns01RRNn8LDS.png luôn qua mR0CntOuft2m.png.

Đặt 14HSb1qSa2T7.pngqX9eWSLlMJ0H.png.

Xi9yDGYIKQzA.png.

Xét hàm số GWxL1YXmZCQL.png, KQLKtyXwn337.png.

ZUAYJEOEpfrU.png, jaIBW78kJoa6.png.

Suy ra hàm số 4EIMR6Zwh7eJ.png liên tục và đồng biến trên cThMfW7bpE2V.png.

Do đó YyapOkbc8F2x.png.

 

Vậy 92A1omVQeorc.png đạt giá trị lớn nhất uDGHzOE9APNp.png9pT2B1PS49UL.png.

14 tháng 3 2017

Đạo hàm y’ = 3x2 – 3m

 

Hàm số có 2 cực trị khi và chỉ khi : m> 0

Khi đó tọa độ 2 điểm cực trị của đồ thị hàm số là: 

 

M ( m ; - 2 m m + 2 ) N ( - m ;     2 m m + 2 )   ⇒ M N → = ( - 2 m ; 4 m m )

 

Phương trình đường thẳng MN: 2mx+ y-2=0

Ta có : 

S ∆ I A B = 1 2 I A . I B . sin   A I B ^ = 1 2 sin   A I B ^ ≤ 1 2

Dấu bằng xảy ra khi 

WNpjPgfG2H0W.png

Chọn B.

6 tháng 12 2018

Chọn B

[Phương pháp tự luận]

y ' = 3 x 2 - 3 m

Hàm số có 2 cực trị khi và chỉ khi m > 0

Khi đó tọa độ 2 điểm cực trị của đồ thị hàm số là : M ( m ; - 2 m m + 2 )

Phương trình đt MN :  2 m x + y - 2 = 0

⇔ m = 1 ± 3 2

1 tháng 6 2019

Đáp án A

+ Phương trình hoành độ giao điểm: HaxOyz9SzhOV.png

+ Điều kiện để d cắt tại hai điểm phân biệt là TArTMJ8HHWzY.png.

+ Trung điểm của MN là I.

+ Theo công thức đường trung tuyến ksOwFya1tWFX.png.

73U7Yq5lINuX.png nhỏ nhất khi o1V4B0s7RW3t.png nhỏ nhất.

9yhspr4wTuwx.png, dấu bằng xảy ra khi Z0K5yxxAL9jb.png

6 tháng 3 2017

20 tháng 3 2019

Chọn D

Phương trình hoành độ giao điểm :

hrQLulxquYqE.png

Theo yêu cầu bài toán : mYDvJSfbi9rY.png phải có hai nghiệm phân biệt khác y3wBRav1RRDC.png

fH7y0EuIOGiA.png

Gọi 2Amb7fchIgtp.png,hH5yyvmJv9rH.png suy ra xJJ5FWW7BQ5q.png là trọng tâm của tam giác CHiPdbzuMmVK.png

 

Theo yêu cầu bài toán :

.

22 tháng 7 2019

Phương trình hoành độ giao điểm

x3+2mx2+3(m-1)x+2  =-x+2 hay    x(x2+2mx+3(m-1))=0  

suy ra x=0 hoặc x2+2mx+3(m-1)=0    (1)

Đường thẳng d cắt (C)  tại ba điểm phân biệt khi và chỉ khi phương trình (1)  có hai nghiệm phân biệt khác 0

⇔ m 2 - 3 m + 3 > 0 m - 1 ≠ 0 ⇔ ∀ m m ≠ 1 ⇔ m ≠ 1

Khi đó ta có: C( x; -x1+2) ; B(x; -x2+2)  trong đó x; x2 là nghiệm của (1) ; nên theo Viet thì  x 1 + x 2 = - 2 m x 1 x 2 = 3 m - 3

Vậy 

C B → = ( x 2 - x 1 ; - x 2 + x 1 ) ⇒ C B = 2 ( x 2 - x 1 ) 2 = 8 ( m 2 - 3 m + 3 )

d ( M ; ( d ) ) = - 3 - 1 + 2 2 = 2

Diện tích tam giác MBC bằng khi và chỉ khi

q7KoBR4YHR86.png

Chọn B.

AH
Akai Haruma
Giáo viên
13 tháng 12 2016

a) Hàm có cực đại, cực tiểu khi mà $y'=-3x^2+2(m-1)x=x[2(m-1)-3x]$ có ít nhất hai nghiệm phân biệt $\Leftrightarrow 2(m-1)-3x=0$ có một nghiệm khác $0$ hay $m\neq 1$

b) Đồ thị hàm số $(\star)$ cắt trục hoành tại ba điểm phân biệt khi mà phương trình $y=-x^3+(m-1)x^2-m+2=0$ có $3$ nghiệm phân biệt

$\Leftrightarrow (1-x)[x^2+x(2-m)+(2-m)]=0$ có ba nghiệm phân biệt

$\Leftrightarrow x^2+x(2-m)+(2-m)=0$ có hai nghiệm phân biệt khác $1$

Do đó ta cần có $\left\{\begin{matrix}1+2-m+2-m=5-2m\neq 0\\ \Delta =(2-m)^2-4(2-m)>0\end{matrix}\right.$

Vậy để thỏa mãn đề bài thì $m\neq \frac{5}{2}$ và $m>2$ hoặc $m<-2$

c) Gọi điểm cố định mà đồ thị hàm số đi qua là $(x_0,y_0)$

$y_0=-x_0^3+(m-1)x_0^2-m+2$ $\forall m\in\mathbb{R}$

$\Leftrightarrow m(x_0^2-1)-(x_0^3+x_0^2+y_0-2)=0$ $\forall m\in\mathbb{R}$

$\Rightarrow\left{\begin{matrix}x_0^2=1\\ x_0^3+x_0^2+y_02=0\end{matrix}\right.\begin{bmatrix}(x_0,y_0)=(1;0)\\ (x_0,y_0)=(-1;2)\end{bmatrix}$

 

AH
Akai Haruma
Giáo viên
13 tháng 12 2016

Viết lại đoạn cuối:

$\Rightarrow\left{\begin{matrix}x_0^2=1\\x_0^3+x_0^2+y_0-2=0\end{matrix}\right.$ $\Rightarrow \begin{bmatrix}(x_0,y_0)=(1;0)\\ (x_0,y_0)=(-1;2)\end{bmatrix}$