Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(2\overrightarrow{OA}+\overrightarrow{DB}+\overrightarrow{DC}\)
\(=2\overrightarrow{OA}+\overrightarrow{DO}+\overrightarrow{DB}+\overrightarrow{DO}+\overrightarrow{DC}\)
\(=2\overrightarrow{OA}-2\overrightarrow{OA}=\overrightarrow{O}\)(ĐPCM)
b) \(20\overrightarrow{A}+\overrightarrow{OB}+\overrightarrow{OC}\)
\(=2\overrightarrow{OA}+\overrightarrow{DO}+\overrightarrow{OB}+\overrightarrow{DC}-\overrightarrow{DO}\)
\(=20\overrightarrow{A}-20\overrightarrow{A}+4\overrightarrow{OD}=4\overrightarrow{OD}\)(ĐPCM)
Lần sau nhớ thêm dấu vector vào cho dễ nhìn bạn nha :))
a) M là trung điểm BC \(\Rightarrow2\overrightarrow{DM}=\overrightarrow{DB}+\overrightarrow{DC}\Leftrightarrow2\overrightarrow{MD}+\overrightarrow{DB}+\overrightarrow{DC}=\overrightarrow{0}\)
D là trung điểm AM \(\Rightarrow\overrightarrow{DA}=\overrightarrow{MD}\)
\(2\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}=2\overrightarrow{MD}+\overrightarrow{DB}+\overrightarrow{DC}=\overrightarrow{0}\)
b) M là trung điểm BC \(\Rightarrow2\overrightarrow{OM}=\overrightarrow{OB}+\overrightarrow{OC}\)
D là trung điểm AM \(\Rightarrow2\overrightarrow{OD}=\overrightarrow{OA}+\overrightarrow{OM}\Rightarrow4\overrightarrow{OD}=2\overrightarrow{OA}+2\overrightarrow{OM}=2\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\)
a) \(\overrightarrow{BC}=\overrightarrow{BA}+\overrightarrow{AC}=-2\overrightarrow{AM}+\frac{3}{2}\overrightarrow{AN}\)
b) Kẻ hình bình hành AMPN, ta có:
\(\overrightarrow{AK}=\frac{1}{2}\overrightarrow{AP}=\frac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)=\frac{1}{2}\left(\frac{1}{2}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}\right)=\frac{1}{4}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\)
\(\overrightarrow{KA}=-\overrightarrow{AK}=-\frac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)=-\frac{1}{2}\left(\frac{1}{2}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\right)\)
\(=-\frac{1}{4}\overrightarrow{AB}-\frac{1}{6}\overrightarrow{AC}\)
\(\overrightarrow{KD}=\overrightarrow{AD}-\overrightarrow{AK}=\overrightarrow{AD}+\overrightarrow{KA}=\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)-\frac{1}{4}\overrightarrow{AB}-\frac{1}{6}\overrightarrow{AC}\)
\(=\frac{1}{4}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\)
a) Có \(\overrightarrow{BC}^2=\left(\overrightarrow{AC}-\overrightarrow{AB}\right)^2=\overrightarrow{AC}^2+\overrightarrow{AB}^2-2\overrightarrow{AC}.\overrightarrow{AB}\)
Suy ra: \(\overrightarrow{AC}.\overrightarrow{AB}=\dfrac{\overrightarrow{AC^2}+\overrightarrow{AB}^2-\overrightarrow{BC}^2}{2}=\dfrac{8^2+6^2-11^2}{2}=-\dfrac{21}{2}\).
Do \(\overrightarrow{AC}.\overrightarrow{AB}< 0\) nên \(cos\widehat{BAC}< 0\) suy ra góc A là góc tù.
b) Từ câu a suy ra: \(cos\widehat{BAC}=\dfrac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|\overrightarrow{AB}\right|.\left|\overrightarrow{AC}\right|}=-\dfrac{21}{2.6.8}=-\dfrac{7}{32}\).
Do N là trung điểm của AC nên \(AN=AC:2=8:2=4cm\).
\(\overrightarrow{AM}.\overrightarrow{AN}=AM.AN.cos\left(\overrightarrow{AM},\overrightarrow{AN}\right)\)
\(=2.4.cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)=2.4.\dfrac{-7}{32}=-\dfrac{7}{4}\).