K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2019

Đáp án C

Gieo 2 lần ta có 36 kết quả, trong đó có 18 trường hợp ra tổng 2 lần chẵn, 18 trường hợp ra lẻ.

Đến lần gieo thứ 3, ta có

+) Nếu tổng 2 lần trước là chẵn, lần 3 là chẵn thì tổng 3 lần chẵn, suy ra có 3 kết quả

+) Nếu tổng 2 lần trước là lẻ, lần 3 là lẻ thì tổng 3 lần chẵn, suy ra có 3 kết quả

Với 18 lần chẵn và 18 lần được lẻ trong 2 lần gieo trước, số các kết quả thỏa mãn là 18.3 + 18.3 = 108.

6 tháng 8 2020

2, sin4x+cos5=0 <=> cos5x=cos\(\left(\frac{\pi}{2}+4x\right)\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{2}+k2\pi\\x=-\frac{\pi}{18}+\frac{k2\pi}{9}\end{cases}\left(k\inℤ\right)}\)

ta có \(2\pi>0\Leftrightarrow k< >\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(\frac{\pi}{2}\)khi k=0

\(-\frac{\pi}{18}+\frac{k2\pi}{9}>0\Leftrightarrow k>\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(-\frac{\pi}{18}-\frac{k2\pi}{9}\)là \(\frac{\pi}{6}\)khi k=1

vậy nghiệm dương nhỏ nhất của phương trình là \(\frac{\pi}{6}\)

\(\frac{\pi}{2}+k2\pi< 0\Leftrightarrow k< -\frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(\frac{\pi}{2}+k2\pi\)là \(-\frac{3\pi}{2}\)khi k=-1

\(-\frac{\pi}{18}+\frac{k2\pi}{9}< 0\Leftrightarrow k< \frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(-\frac{\pi}{18}+\frac{k2\pi}{9}\)là \(-\frac{\pi}{18}\)khi k=0

vậy nghiệm âm lớn nhất của phương trình là \(-\frac{\pi}{18}\)

18 tháng 5 2017

Tổ hợp - xác suất

28 tháng 11 2016

2

9 tháng 4 2017

Không gian mẫu là Ω = {1, 2, 3, 4, 5, 6}. Số kết quả có thế có thể có là 6 (hữu hạn); các kết quả đồng khả năng.

Ta có bảng:

b

1

2

3

4

5

6

∆ = b2 - 8

-7

-4

1

8

17

28

a) Phương trình x2 + bx + 2 = 0 có nghiệm khi và chỉ khi ∆ = b2 - 8 ≥ 0 (*). Vì vậy nếu A là biến cố: "Xuất hiện mặt b chấm sao cho phương trình x2 + bx + 2 = 0 có nghiệm"

thì A = {3, 4, 5, 6}, n(A) = 4 và

P(A) = = .

b) Biến cố B: "Xuất hiện mặt b chấm sao cho phương trình x2 + bx + 2 = 0 vô nghiệm" là biến cố A, do đó theo qui tắc cộng xác suất ta có

P(B) = 1 - P(A) = .

c) Nếu C là biến cố: "Xuất hiện mặt b chấm sao cho phương trình x2 + bx + 2 = 0 có nghiệm nguyên" thì C = {3}, vì vậy

P(C) = .



Chọn C

Trả lời :

Có 520 số chẵn gồm bốn chữ số đôi một khác nhau được lập từ các số 0,1,2,4,5,6,7.

# Hok tốt !