Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tham khảo
Kết quả thuận lợi cho biến cố "Tổng số chấm xuất hiện trên hai con xúc xắc là 5" là: 4
Kết quả thuận lợi cho biến cố "Tổng số chấm xuất hiện trên hai con xúc xắc là 10" là: 3
Kết quả thuận lợi cho biến cố "Tổng số chấm xuất hiện trên hai con xúc xắc chia hết cho 5'' là:\(3+4=7\)
Xác suất của biến cố "Tổng số chấm xuất hiện trên hai con xúc xắc chia hết cho 5" là: \(\dfrac{7}{36}\)
\(\Rightarrow C\)
a) Không gian mẫu : Ω= { (i,j)∖ i.j = 1,2,3,4,5,6}
với i là số chấm xuất hiện trên mặt con súc sắc thứ nhất , j là số chấm xuất hiên trên mặt con súc sắc thứ 2. → /Ω/ = 36
b) từ gt ta có:
ΩA = { (1,1); (1,2); (1,3); (1,4); (1,5); (2,1); (2,2); (2,3); (2,4); (3,1); (3,2); (3,3); (4,1); (4,2); (5,1); (1,6); (3,4); (4,3); (5.2); (2,5); (6,1)}
→/ΩA/ = 21
Do đó: P(A) = /ΩA/ phần /Ω/ = 21/36 = 7/12
c) từ gt có:
ΩB = { (1,6) ; (2,6);... (6,6) ; (6,1); (6,2);..; (6,5)}
ΩC = {như trên nhưng trừ (6,6)}
do đó: P(B) = 11/36
P(C) = 10/36 = 5/18
a. Không gian mẫu là 6*6=36
b. A có các kết quả thuận lợi là (1,6) (6,1) (2,5) (5,2) (3,4) (4,3)
c. Biến cố đối của B sẽ là " Không có con xúc xắc nào xuất hiện mặt 6 chấm" Tức là con xúc xắc sẽ trở thành có 5 mặt => 5A2+5
=> P(B)= 1- P(Biến cố đối B)
d. (6,1) (6,2) (6,3) (6,4) (6,5) và ngược lại. Trừ (6,6)
=> có 10
=> P(C)= 10/36= 5/18
Đáp án A