K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow2x^2+6x-x^2-2x+x+2-x^2-6=0\)

=>5x-4=0

hay x=4/5

b: \(\Leftrightarrow\left(x-5\right)\left(x+x+3\right)=0\)

=>(x-5)(2x+3)=0

=>x=5 hoặc x=-3/2

19 tháng 2 2022

a) \(2x\left(x+3\right)-\left(x-1\right)\left(x+2\right)=x^2+6\)

\(2x^2+6x-\left(x^2+2x-x-2\right)=x^2+6\)

\(x^2+5x+2=x^2+6\)

\(x^2+5x+2-x^2-6=0\)

\(5x-4=0\)

\(x=\dfrac{4}{5}\)

b) \(x\left(x-5\right)+\left(x-5\right)\left(x+3\right)=0\)

\(\left(x-5\right)\left(x+x+3\right)=0\)

\(\left(x-5\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{3}{2}\end{matrix}\right.\)

6 tháng 6 2021

bạn tự kết luận nhé 

a, \(\left(x+3\right)^2+\left(2x-1\right)^2=10\)

\(\Leftrightarrow x^2+6x+9+4x^2-4x+1=10\)

\(\Leftrightarrow5x^2+2x=0\Leftrightarrow x\left(5x+2\right)=0\Leftrightarrow x=-\frac{2}{5};x=0\)

b, \(\left(x-2\right)^2+\left(2x+1\right)^2=25\)

\(\Leftrightarrow x^2-4x+4+4x^2+4x+1=25\)

\(\Leftrightarrow5x^2-20=0\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\Leftrightarrow x=\pm2\)

c, \(\left(3x+7\right)\left(\frac{3}{5}-6\right)=0\Leftrightarrow3x+7=0\Leftrightarrow x=-\frac{7}{3}\)

6 tháng 6 2021

Trả lời:

a, ( x + 3 )2 + ( 2x - 1 )2 = 10

<=> x2 + 6x + 9 + 4x2 - 4x + 1 = 10

<=> 5x2 + 2x + 10 = 10

<=> 5x2 + 2x = 0

<=> 5x ( x + 2 ) = 0

<=> x = 0 hoặc x + 2 = 0

                      <=> x = -2

Vậy S = { 0; - 2 } 

b, ( x - 2 )2 + ( 2x + 1 ) 2 = 25

<=> x2 - 4x + 4 + 4x2 + 4x + 1 = 25

<=> 5x2 + 5 = 25

<=> 5x2 + 5 - 25 = 0

<=> 5x2 - 20 = 0

<=> 5 ( x2 - 4 ) = 0

<=> ( x - 2 ) ( x + 2 ) = 0

<=> x - 2 = 0 hoặc x + 2 = 0

<=> x = 2 hoặc x = - 2 

Vậy S = { 2; - 2 } 

c, ( 3x + 7 ) ( 3/5 - 6 ) = 0

<=> 3x + 7 = 0

<=> 3x = - 7

<= x = -7/3

Vậy S = { -7/3 }

26 tháng 12 2016

a) Ta thấy:
\(\left(x+4\right)\left(x-4\right)=x\left(x-\frac{2}{3}\right)\)
\(\Rightarrow\left(x^2-4x\right)+\left(4x-16\right)=x^2-\frac{2}{3}x\)
\(\Rightarrow\left(x^2-16\right)-\left(4x-4x\right)=x^2-\frac{2}{3}x\)
\(\Rightarrow x^2-16-0=x^2-\frac{2}{3}x\)
\(\Rightarrow x^2-16=x^2-\frac{2}{3}x\)
\(\Rightarrow16=\frac{2}{3}x\)    ( do có cùng hiệu và cùng số bị trừ )
\(\Rightarrow x=16:\frac{2}{3}\)
\(\Rightarrow x=24\)
Vậy x = 24

26 tháng 12 2016

b.) x^3-x^2-2x=0

    x(x^2-x-2)=0

   x(x^2-2x+x-2)=0

   x(x(x-2)+x-2)=0

  x(x-2)(x+1)=0

suy ra x=0 hoặc x-2=0 hoặc x+1=0 

    vậy x=0 hoặc x=2 hoặc x=-1 

hình như câu c đề phải là (x+4)/120 thì phải đó bạn 

c.)(x+4)/120+(x+8)/116=(x+5)/119+(x+7)/117

   (x+4)/120+(x+8)/116-(x+5)/119-(x+7)/117=0

   (x+4)/120+1+(x+8)/116+1-(x+5)/119-1-(x+7)/117-1=0

   (x+4)/120+1+(x+8)/116+1-((x+5)/119+1)-((x+7)/117+1)=0

   (x+124)/120+(x+124)/116-(x+124)/119-(x+124)/117=0

(x+124)(1/120+1/116-1/119-1/117)=0

suy ra x+124=0

 x=-124

8 tháng 1 2018

Bài 2: a) \(3x^3-3x=0\Leftrightarrow3x\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

b) \(x^2-x+\frac{1}{4}=0\Leftrightarrow x^2-2.\frac{1}{2}+\left(\frac{1}{2}\right)^2=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

11 tháng 2 2018

a) \(\dfrac{x+1}{2}+\dfrac{3x-2}{3}=\dfrac{x-7}{12}\)

\(\Leftrightarrow\dfrac{6\left(x+1\right)+4\left(3x-2\right)}{12}=\dfrac{x-7}{12}\)

\(\Leftrightarrow6\left(x+1\right)+4\left(3x-2\right)=x-7\)

\(\Leftrightarrow6x+6+12x-8=x-7\)

\(\Leftrightarrow6x+12x-x=-7-6+8\)

\(\Leftrightarrow17x=-5\)

\(\Leftrightarrow x=\dfrac{-5}{17}\)

Vậy .........................

b) \(\dfrac{2x}{x-3}-\dfrac{5}{x+3}=\dfrac{x^2+21}{x^2-9}\left(ĐKXĐ:x\ne\pm3\right)\)

\(\Leftrightarrow\dfrac{2x\left(x+3\right)-5\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2+21}{\left(x-3\right)\left(x+3\right)}\)

\(\Rightarrow2x\left(x+3\right)-5\left(x-3\right)=x^2+21\)

\(\Leftrightarrow2x^2+6x-5x+15=x^2+21\)

\(\Leftrightarrow2x^2-x^2+x+15-21=0\)

\(\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow x^2-2x+3x-6=0\)

\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(n\right)\\x=-3\left(l\right)\end{matrix}\right.\)

Vậy \(S=\left\{2\right\}\)

d) \(\left(x-4\right)\left(7x-3\right)-x^2+16=0\)

\(\Leftrightarrow\left(x-4\right)\left(7x-3\right)-\left(x^2-16\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(7x-3\right)-\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(7x-3-x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(6x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\6x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{7}{6}\end{matrix}\right.\)

Vậy .........................

P/s: các câu còn lại tương tự, bn tự giải nha

12 tháng 2 2018

làm hộ mình câu còn lại đi :))

a: =>5-x+6=12-8x

=>-x+11=12-8x

=>7x=1

hay x=1/7

b: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)

\(\Leftrightarrow9x+6-3x-1=12x+10\)

=>12x+10=6x+5

=>6x=-5

hay x=-5/6

d: =>(x-2)(x-3)=0

=>x=2 hoặc x=3

14 tháng 7 2017

1) \(\left(x-3\right)\left(x-5\right)+44\)

\(=x^2-3x-5x+15+44\)

\(=x^2-8x+59\)

\(=x^2-2.x.4+4^2+43\)

\(=\left(x-4\right)^2+43\ge43>0\)

\(\rightarrowĐPCM.\)

2) \(x^2+y^2-8x+4y+31\)

\(=\left(x^2-8x\right)+\left(y^2+4y\right)+31\)

\(=\left(x^2-2.x.4+4^2\right)-16+\left(y^2+2.y.2+2^2\right)-4+31\)

\(=\left(x-4\right)^2+\left(y+2\right)^2+11\ge11>0\)

\(\rightarrowĐPCM.\)

3)\(16x^2+6x+25\)

\(=16\left(x^2+\dfrac{3}{8}x+\dfrac{25}{16}\right)\)

\(=16\left(x^2+2.x.\dfrac{3}{16}+\dfrac{9}{256}-\dfrac{9}{256}+\dfrac{25}{16}\right)\)

\(=16\left[\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{256}\right]\)

\(=16\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{16}>0\)

-> ĐPCM.

4) Tương tự câu 3)

5) \(x^2+\dfrac{2}{3}x+\dfrac{1}{2}\)

\(=x^2+2.x.\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{1}{2}\)

\(=\left(x+\dfrac{1}{3}\right)^2+\dfrac{7}{18}>0\)

-> ĐPCM.

6) Tương tự câu 5)

7) 8) 9) Tương tự câu 3).

15 tháng 7 2017

Giải rõ giúp mình với

3 tháng 4 2018

a) 3x-7>4x+2

\(\Leftrightarrow3x-4x>2+7\)

\(\Leftrightarrow-x>9\Leftrightarrow x< -9\)

Vậy S={x<9|x\(\in R\)}

b) 2(x-3)<3-5(2x-1)+4x

\(\Leftrightarrow2x-6< 3-10x+5+4x\)

\(\Leftrightarrow2x+10x-4x< 3+5+6\)

\(\Leftrightarrow8x< 14\Leftrightarrow x< \dfrac{7}{4}\)

Vậy S={x<\(\dfrac{7}{4}\)|x\(\in R\)}

c) (x-2)2+x(x-3)<2x(x-3)+1

\(\Leftrightarrow x^2-4x+4+x^2-3x< 2x^2-6x+1\)

\(\Leftrightarrow-x< -3\)

\(\Leftrightarrow x>3\)

Vậy S =\(\left\{x>3|x\in R\right\}\)

d) \(\dfrac{x-1}{3}-x+1>\dfrac{2x-3}{2}\)

\(\Leftrightarrow2x-2-6x+6>6x-9\)

\(\Leftrightarrow-10x>-13\Leftrightarrow x< \dfrac{13}{10}\)

Vậy S=\(\left\{x< \dfrac{13}{10}|x\in R\right\}\)

Biểu diễn tập nghiệm thì bạn tự làm