Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e/ \(\sqrt{x-2}+\sqrt{6-x}=\sqrt{x^2-8x+24}\)
\(\Leftrightarrow4+2\sqrt{\left(x-2\right)\left(6-x\right)}=x^2-8x+24\)
\(\Leftrightarrow2\sqrt{-x^2+8x-12}=x^2-8x+20\)
Đặt \(\sqrt{-x^2+8x-12}=a\left(a\ge0\right)\)thì pt thành
\(2a=-a^2+8\)
\(\Leftrightarrow a^2+2a-8=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-4\left(l\right)\\a=2\end{cases}}\)
\(\Leftrightarrow\sqrt{-x^2+8x-12}=2\)
\(\Leftrightarrow-x^2+8x-12=4\)
\(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x=4\)
a/ \(4x^2+3x+3-4x\sqrt{x+3}-2\sqrt{2x-1}=0\)
\(\Leftrightarrow\left(4x^2-4x\sqrt{x+3}+x+3\right)+\left(2x-1-2\sqrt{2x-1}+1\right)=0\)
\(\Leftrightarrow\left(2x-\sqrt{x+3}\right)^2+\left(1-\sqrt{2x-1}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}2x=\sqrt{x+3}\\1=\sqrt{2x-1}\end{cases}\Leftrightarrow}x=1\)
ĐK: \(x\ge1,y\ge2,z\ge3\).
\(x+y+z-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}+8=0\)
\(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)(tm)
Giải phương trình trên(nêu rõ cách giải):
\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-2\sqrt{x-1}}=2\sqrt{2}\)
b/
\(pt\Leftrightarrow\left(x-1-2\sqrt{x-1}+1\right)+\left(y-2-4\sqrt{y-2}+4\right)+\left(z-3-6\sqrt{z-3}+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
\(\Leftrightarrow\sqrt{x-1}=1;\text{ }\sqrt{y-2}=2;\text{ }\sqrt{z-3}=3\)
\(\Leftrightarrow x=2;\text{ }y=6;\text{ }z=12\)
b/ ĐKXĐ:...
\(\Leftrightarrow x-19-2\sqrt{x-19}+1+y-7-4\sqrt{y-7}+4+z-1997-6\sqrt{z-1997}+9=0\)
\(\Leftrightarrow\left(\sqrt{x-19}-1\right)^2+\left(\sqrt{y-7}-2\right)^2+\left(\sqrt{z-1997}-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-19}=1\\\sqrt{y-7}=2\\\sqrt{z-1997}=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=20\\y=11\\z=2006\end{matrix}\right.\)
c/ ĐKXĐ: \(x\ge-1\)
\(\Leftrightarrow10\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=3\left(x^2+2\right)\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x^2-x+1}=b\end{matrix}\right.\) \(\Rightarrow a^2+b^2=x^2+2\)
Pt tương đương:
\(10ab=3\left(a^2+b^2\right)\Leftrightarrow3a^2-10ab+3b^2=0\)
\(\Leftrightarrow\left(3a-b\right)\left(a-3b\right)=0\Rightarrow\left[{}\begin{matrix}3a=b\\a=3b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3\sqrt{x+1}=\sqrt{x^2-x+1}\\\sqrt{x+1}=3\sqrt{x^2-x+1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}9\left(x+1\right)=x^2-x+1\\x+1=9\left(x^2-x+1\right)\end{matrix}\right.\) \(\Leftrightarrow...\)
a/ ĐKXĐ; \(-1\le x\le8\)
Đặt \(\sqrt{1+x}+\sqrt{8-x}=t>0\Rightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\frac{t^2-9}{2}\)
\(\Rightarrow t+\frac{t^2-9}{2}=3\)
\(\Leftrightarrow t^2+2t-15=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-5\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{1+x}+\sqrt{8-x}=3\)
\(\Leftrightarrow9+2\sqrt{\left(1+x\right)\left(8-x\right)}=9\)
\(\Leftrightarrow\left(1+x\right)\left(8-x\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=8\end{matrix}\right.\)
Ta có:
\(4\sqrt{8-x}+4\sqrt{8-y}+4\sqrt{8-z}\)
\(\le8-x+4+8-y+4+8-z+4\)
\(=36-x-y-z\)
\(=48-\left(x+4\right)-\left(y+4\right)-\left(z+4\right)\)
\(\le48-4\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
\(=48-4.6=24\)
\(\Rightarrow\sqrt{8-x}+\sqrt{8-y}+\sqrt{8-z}\le6\)
Dấu = xảy ra khi \(x=y=z=4\)
bạn tham khảo nhé:
Vì \(x,y,z\ge0\)không mất tính tổng quát ta giả sử \(x\ge y\ge z\)
hệ \(\Leftrightarrow\hept{\begin{cases}3\sqrt{x}=6\\3\sqrt{8-x}=6\end{cases}\Leftrightarrow3\sqrt{x}=3\sqrt{8-x}\Leftrightarrow x=4}\)
\(\Rightarrow4\ge y\ge z\)
Nếu \(x=1\)thì \(\sqrt{8-x}=\sqrt{7}\left(L\right)\)
nếu \(x=2\)thì \(\sqrt{x}=\sqrt{2}\left(L\right)\)
\(\)nếu \(x=3\)thì \(\sqrt{x}=\sqrt{3}\left(L\right)\)
Loại vì các số vô tỉ không thẻ nào cộng lại là 1 số nguyên
Vậy \(\left(x;y;z\right)\)là \(\left(4;4;4\right)\)
a) ĐK: \(x\ge1\)
Ta có: \(\sqrt{4x-4}=\dfrac{x+3}{2}\)
<=> \(2\sqrt{4\left(x-1\right)}=x+3\)
<=> \(2.2\sqrt{x-1}=x+3\)
<=> \(x+3-4\sqrt{x-1}=0\)
<=> \(\left(x-1\right)-4\sqrt{x-1}+4=0\)
<=> \(\left(\sqrt{x-1}-2\right)^2=0\)
<=> \(\sqrt{x-1}=2\)
<=> \(x-1=4\) => \(x=5\) (TM)
Vậy ............................................
b) ĐK: \(x\ge1;y\ge2;z\ge3\)
Ta có: \(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
<=> \(\left(x-1\right)-2\sqrt{x-1}+1+\left(y-2\right)-4\sqrt{y-2}+4+\)
\(\left(z-3\right)-6\sqrt{z-3}+9=0\)
<=> \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}+3\right)^2=0\)
=> \(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x-1=1\\y-2=4\\z-3=9\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=2\\y=6\\z=12\end{matrix}\right.\) (TM)
Vậy ............................................
\(\left(x-1\right)-4\sqrt{x-1}+4+\left(y-2\right)-6\sqrt{y-2}+9+\left(z-3\right)-8\sqrt{z-3}+16=0\)
\(\left(\sqrt{x-1}-2\right)^2+\left(\sqrt{y-2}-3\right)^2+\left(\sqrt{z-3}-4\right)^2=0\)
giải ra x=5 y=11 z=19