K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

29 tháng 3 2016

a) Chia 2 vế của phương trình cho \(5^x>0\), ta có :

\(\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x=1\)

Xét \(f\left(x\right)=\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x\)

Ta có :

\(f'\left(x\right)=\left(\frac{3}{5}\right)^x\ln\frac{3}{5}+\left(\frac{4}{5}\right)^x\ln\frac{4}{5}<0\) với mọi x

Do đó \(f\left(x\right)\) đồng biến trên R

Mặt khác

f(2) =1. Do đó x=2 là nghiệm duy nhất của phương trình

b) Phương trình tương đương với

\(2^x\left(2-2^x\right)=x-1\)

Với x=1 thì phương trình trên đúng, do đó x=1 là nghiệm của phương trình

- Nếu x>1 thì \(2<2^x\) và \(x-1>0\) do đó \(2^x\left(2-2^x\right)<0\)\(x-1\)

phương trình vô nghiệm

- Nếu x<1 thì \(2>2^x\) và \(x-1<0\) do đó \(2^x\left(2-2^x\right)>0\)\(x-1\)

phương trình đã cho có 1 nghiệm duy nhất là x=1

29 tháng 3 2016

d) Đưa 2 vế về cùng cơ số 2, ta được

\(2^{-3}.2^{4x-6}=\left(2^{\frac{-5}{2}}\right)^x\) hay \(2^{4x-9}=2^{\frac{5}{2}x}\)

Do đó :

\(4x-9=\frac{5}{2}x\Leftrightarrow\frac{3}{2}x=9\Leftrightarrow x=6\)

Vậy phương trình đã cho chỉ có 1 nghiệm x=6

29 tháng 3 2016

c) Phương trình đã cho tương đương với :

\(\frac{1}{4}.4^x+16.4^x=10\Leftrightarrow\frac{33}{2}.4^x=10\Leftrightarrow4^x=\frac{20}{33}\Leftrightarrow x=\log_4\frac{20}{33}\)

Vậy nghiệm của phương trình là \(x=\log_4\frac{20}{33}\)

27 tháng 4 2017

Hỏi đáp Toán

Hỏi đáp Toán

12 tháng 4 2017

Đặt t = 3 x  (t > 0) , ta có bất phương trình

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì vế trái dương nên vế phải cũng phải dương, tức là 3t - 1 > 0.

Từ đó ta có hệ:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó 1/3 < 3x ≤ 3. Vậy −1 < x  ≤  1.

8 tháng 4 2016

       \(5^x+5^{1-x}-6=0\)

<=> \(5^x+\frac{5}{5^x}-6=0\)

<=> \((5^x)^2-6.5^x+5=0\)

<=> \(5^x=5 \) hoặc \(5^x=1\)

<=> \(x=1 \) hoặc \(x=log_{5}{1}\)

Vậy phương trình đã cho có nghiệm: \(x=1 \) hoặc \(x=log_{5}{1}\)

8 tháng 4 2016

\(5^x+5^{1-x}-6=0\Leftrightarrow5^{2x}-6.5+5=0\)

\(\Leftrightarrow\begin{cases}5^x=5\\5^x=1\end{cases}\)

\(\Rightarrow\begin{cases}x=1\\x=0\end{cases}\)

29 tháng 3 2016

Phương trình tương đương với :

\(5^{x-2}-x-1=5^{x^2-x-1}+x^2-x\)

\(\Leftrightarrow5^{x-1}-5\left(x-1\right)=5^{x^2-x}+5\left(x^2-x\right)\)

Xét \(f\left(t\right)=5^t+5t\left(t\in R\right)\)

Dễ thấy \(f\left(t\right)\) luôn đồng biến.

Mặt khác :

\(f\left(x-1\right)=f\left(x^2-x\right)\)

Do đó

\(\left(x-1\right)=\left(x^2-x\right)\)

Từ đó dễ dàng tìm được x=1 là nghiệm duy nhất của phương trình.

20 tháng 5 2016

\(5^{1+x^2}-5^{1-x^2}>24\Leftrightarrow5\times5^{x^2}-\frac{5}{5^{x^2}}>24\) (1)

Đặt \(t=5^{x^2}\), dk: \(t>0\)

\(\left(1\right)\Leftrightarrow5t-\frac{5}{t}>24\Leftrightarrow5t^2-24t-5>0\Leftrightarrow\left[\begin{array}{nghiempt}t< \frac{-1}{5}\left(loai\right)\\t>5\end{array}\right.\)\(\Leftrightarrow5^{x^2}>5\Leftrightarrow x^2>1\Leftrightarrow\left[\begin{array}{nghiempt}x< -1\\x>1\end{array}\right.\)

20 tháng 5 2016

cảm ơn nhá