Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x^2+2}{5}\ge0\)
\(\Rightarrow x^2+2\ge0\)( đúng với mọi x )
Vậy \(S=\left\{ℝ\right\}\)
b) \(\frac{x+2}{x-3}< 0\)( ĐKXĐ : \(x\ne3\))
Xét hai trường hợp :
1. \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\)( loại )
2. \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3\)
Vậy nghiệm của bất phương trình là -2 < x < 3
c) \(\frac{x-1}{x-3}>1\)( ĐKXĐ : \(x\ne3\))
\(\Leftrightarrow\frac{x-3+2}{x-3}>1\)
\(\Leftrightarrow1+\frac{2}{x-3}>1\)
\(\Leftrightarrow\frac{2}{x-3}>0\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\)
Vậy nghiệm của bất phương trình là x > 3
Nhờ bạn khác vẽ trục số nhé vì mình mới lên lớp 8
Câu 1a : tự kết luận nhé
\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)
Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)
\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)
c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)
\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0
1) 2(x + 3) = 5x - 4
<=> 2x + 6 = 5x - 4
<=> 3x = 10
<=> x = 10/3
Vậy x = 10/3 là nghiệm phương trình
b) ĐKXĐ : \(x\ne\pm3\)
\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)
=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)
=> x + 3 - 2(x - 3) = 5 - 2x
<=> -x + 9 = 5 - 2x
<=> x = -4 (tm)
Vậy x = -4 là nghiệm phương trình
c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)
<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)
<=> 3(x + 1) \(\ge\)2(2x - 2)
<=> 3x + 3 \(\ge\)4x - 4
<=> 7 \(\ge\)x
<=> x \(\le7\)
Vậy x \(\le\)7 là nghiệm của bất phương trình
Biểu diễn
-----------------------|-----------]|-/-/-/-/-/-/>
0 7
Bài làm:
1) \(\left(x-3\right)\left(x+3\right)\le\left(x+2\right)^2+3\)
\(\Leftrightarrow x^2-9\le x^2+4x+4+3\)
\(\Leftrightarrow4x\ge-16\)
\(\Leftrightarrow x\ge-4\)
0 -4
2) \(\frac{4x-5}{3}>\frac{7-x}{5}\Leftrightarrow5\left(4x-5\right)>3\left(7-x\right)\)
\(\Leftrightarrow20x-25>21-3x\)
\(\Leftrightarrow23x>46\)
\(\Rightarrow x>2\)
0 2
Cái dấu ngoặc vuông ở phần 2 là ngoặc tròn nhé!
1. (x - 3)(x + 3) < (x + 2)2 + 3
<=> x^2 - 9 < x^2 + 2x + 2x + 4 + 3
<=> x^2 - x^2 - 2x - 2x < 4 + 3 + 9
<=> -4x < 16
<=> x > -4
-4 0
Trục số: -//////////[----------|--------->
2. (4x - 5)/3 > (7 - x)/5
<=> (5(4x - 5))/15 > (3(7 - x))/5
<=> 5(4x - 5) > 3(7 - x)
<=> 20x - 25 > 21 - 3x
<=> 20x + 3x > 21 + 25
<=> 23x > 46
<=> x > 2
0 2
Trục số: -/////|////////[------------->
a) 2x - 3 > 3(x - 2)
<=> 2x - 3 > 3x - 6
<=> -x > -3
<=> x < 3
b) \(\frac{12x+1}{12}\le\frac{9x+1}{3}-\frac{8x+1}{4}\)
\(\Leftrightarrow\frac{12x+1}{12}\le\frac{4\left(9x+1\right)}{12}-\frac{3\left(8x+1\right)}{12}\)
\(\Leftrightarrow12x+1\le36x+4-24x-3\)
\(\Leftrightarrow0x\le0\)
=> bpt vô số nghiệm
(Bạn tự biểu diễn tập nghiệm nha)
a) Thay x = 3 vào bất phương trình ta được: 2.3 + 3 < 9 <=> 9 < 9 (khẳng định sai)
Vậy x = 3 không là nghiệm của bất phương trình2x + 3 < 9
b) Thay x = 3 vào bất phương trình ta có: -4.3 > 2.3 + 5 => -12 > 11 (khẳng định sai)
Vậy x = 3 không là nghiệm của bất phương trình -4x > 2x + 5
c) Thay x = 3 vào bất phương trình ta có: 5 - 3 > 3.3 -12 => 2 > -3 (khẳng định đúng)
Vậy x = 3 là nghiệm của bất phương trình 5 - x > 3x - 12