Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)
\(A=\frac{\sqrt{z-5}}{z}+\frac{\sqrt{y-4}}{y}+\frac{\sqrt{x-3}}{x}=\frac{\sqrt{5\left(z-5\right)}}{\sqrt{5}z}+\frac{\sqrt{4\left(x-4\right)}}{2y}+\frac{\sqrt{3\left(x-3\right)}}{\sqrt{3}x}\)
Áp dụng BĐT Cosi ta có : \(A\le\frac{\frac{5+z-5}{2}}{\sqrt{5}z}+\frac{\frac{4+y-4}{2}}{2y}+\frac{\frac{3+x-3}{2}}{\sqrt{3}x}=\frac{\sqrt{5}}{10}+\frac{1}{4}+\frac{\sqrt{3}}{6}\)
Dấu "=" xảy ra \(\Leftrightarrow z=10;y=8;x=6\)
\(A=\frac{\sqrt{z-5}}{z}+\frac{\sqrt{y-4}}{y}+\frac{\sqrt{x-3}}{x}\)
Áp dụng bất đẳng thức Côsi:
\(z=z-5+5\ge2\sqrt{5.\left(z-5\right)}\)
\(\Rightarrow\frac{\sqrt{z-5}}{z}\le\frac{1}{2\sqrt{5}}\)
Dấu bằng xảy ra khi \(z-5=5\Leftrightarrow z=10\)
tương tự x, y.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(ĐKXĐ:x\ge1,y\ge2\)
Ta có : \(C=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}\)
\(=\frac{\sqrt{1.\left(x-1\right)}}{x}+\frac{\sqrt{2.\left(y-2\right)}}{y\sqrt{2}}\)
Áp dụng BĐT Cô - si ta có :
\(\sqrt{1.\left(x-1\right)}\le\frac{1+x-1}{2}=\frac{x}{2}\Rightarrow\frac{\sqrt{1.\left(x-1\right)}}{x}\le\frac{1}{2}\)
\(\sqrt{2.\left(y-2\right)}\le\frac{2+y-2}{2}=\frac{y}{2}\Rightarrow\frac{\sqrt{2\left(y-2\right)}}{y}\le\frac{1}{2\sqrt{2}}\)
\(\)Do đó \(C\le\frac{2+\sqrt{2}}{4}\)
Dấu "=" xảy ra khi x = 2, y = 4