Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như phần 1 đề sai.Nếu C nhỏ nhất thì n không có giá trị thuộc Z.Nếu C lớn nhất thì n=(-1)
2.a.x/7+1/14=(-1)/y
<=>2x/14+1/14=(-1)/y
<=>2x+1/14=(-1)/y
=>(2x+1).y=14.(-1)
<=>(2x+1).y=(-14)
(2x+1) và y là cặp ước của (-14).
(-14)=(-1).14=(-14).1
Ta có bảng giá trị:
2x+1 | -1 | 14 | 1 | -14 |
2x | -2 | 13 | 0 | -15 |
x | -1 | 13/2 | 0 | -15/2 |
y | 14 | -1 | -14 | 1 |
Đánh giá | chọn | loại | chọn | loại |
Vậy(x,y) thuộc{(-1;14);(0;-14)}
b.x/9+-1/6=-1/y
<=>2x/9+-3/18=-1/y
<=>2x+(-3)/18=-1/y
=>[2x+(-3)].y=-1.18
<=>(2x-3).y=-18
(2x-3) và y là cặp ước của -18
-18=-1.18=-18.1
Ta có bảng giá trị:
2x-3 | -1 | 18 | 1 | -18 |
2x | 2 | 21 | 4 | -15 |
x | 1 | 21/2 | 2 | -15/2 |
y | 18 | -1 | -18 | 1 |
Đánh giá | chọn | loại | chọn | loại |
Vậy(x;y) thuộc{(1;18);(4;-18)}
\(\frac{x}{4}=\frac{18}{x+1}\)
\(\Leftrightarrow x\left(x+1\right)=72\)
\(\Leftrightarrow x=8\)
P/s tham khảo nha
\(11M=\frac{11^6+11}{11^6+1}=\frac{11^6+1+10}{11^6+1}=\frac{11^6+1}{11^6+1}+\frac{10}{11^6+1}=1+\frac{10}{11^6+1}\)
\(11N=\frac{11^7+11}{11^7+1}=\frac{11^7+1+10}{11^7+1}=\frac{11^7+1}{11^7+1}+\frac{10}{11^7+1}=1+\frac{10}{11^7+1}\)
vì \(\frac{10}{11^6+1}>\frac{10}{11^7+1}\)
nên\(11M>11N\)
=>\(M>N\)
\(M=\frac{11^5+1}{11^6+1}\)
\(\Rightarrow11M=11.\frac{11^5+1}{11^6+1}=\frac{11^6+11}{11^6+1}=\frac{11^6+1+10}{11^6+1}=1+\frac{10}{11^6+1}\)
\(N=\frac{11^6+1}{11^7+1}\)
\(\Rightarrow11N=11.\frac{11^6+1}{11^7+1}=\frac{11^7+11}{11^7+1}=\frac{11^7+1+10}{11^7+1}=1+\frac{10}{11^7+1}\)
Do \(1+\frac{10}{11^6+1}>1+\frac{10}{11^7+1}\)
\(\Rightarrow11M>11N\)
\(\Rightarrow M>N\)
=2018.2018/2019.2019
=1.1/1.1
=1/1
1/1=444444/444444
vì 888887>4444444=>888887/444444>4444444/444444
Ta có:\(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\)
\(=\frac{1}{3}+\left(\frac{1}{31}+\frac{1}{35}+\frac{1}{37}\right)+\left(\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\right)\)\(< \frac{1}{3}+\left(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}\right)+\left(\frac{1}{45}+\frac{1}{45}+\frac{1}{45}\right)\)\(=\frac{1}{3}+\frac{1}{10}+\frac{1}{15}=\frac{1}{2}\)
Vậy ............
Ta có: 1/3 + 1/31 + 1/35 + 1/37 + 1/47 + 1/53 + 1/61 < 1/3 + 3/31 + 3/47 < 1/3 + 3/30 + 3/45
= 1/3 + 1/10 + 1/15 = 1/3 + (1/30) * (3+2) = 1/3 + (1/0) * 5 = 1/3 + 1/6
= (1/6) * (2+1) = (1/6) * 3 = 1/2.
=> 1/3 + 1/31 + 1/35 + 1/37 + 1/47 + 1/53 + 1/61 < 1/2.
Ủng hộ mk nha mina^^
1/2+1/3+1/4+...+1/63>1/31+1/31+...+1/31(62 số hạng 1/31)
hay 1/2+1/3+1/4+...+1/63>62 x 1/31
nên 1/2+1/3+1/4+...+1/63>2(dpcm)
Tính nhanh :
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{18.19}+\frac{2}{19.20}\)
\(=2.\left(\frac{1}{1.2}+\frac{2}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{18.19}+\frac{1}{19.20}\right)\)
\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\right)\)
\(=2.\left(1-\frac{1}{20}\right)\)
\(=2.\left(\frac{20}{20}-\frac{1}{20}\right)\)
\(=2.\frac{19}{20}\)
\(=\frac{19}{10}\)
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{18.19}+\frac{2}{19.20}\)
\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\right)\)
\(=2.\left(1-\frac{1}{20}\right)\)
\(=2.\frac{19}{20}\)
\(=\frac{19}{10}\)
\(\frac{x+1}{3}=\frac{9}{2}\)
\(\left(x+1\right).2=9.3\)
\(\left(x+1\right).2=27\)
\(x+1=27:2\)
\(x+1=13,5\)
\(x=13,5-1=12,5\)
vậy x = 12.5
\(\frac{x+1}{3}=\frac{9}{2}\)
\(\Leftrightarrow2\left(x+1\right)=3\times9\)
\(\Leftrightarrow2\left(x+1\right)=27\)
\(\Leftrightarrow x+1=\frac{27}{2}\)
\(\Leftrightarrow x=\frac{25}{2}\)
\(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)
=> \(\frac{3}{Y}=\frac{X}{9}-\frac{1}{18}\)
=>\(\frac{3}{Y}=\frac{2X}{18}-\frac{1}{18}\)
=>\(\frac{3}{y}=\frac{2x-1}{18}\)
=> 54 = y(2x-1)
=> y(2x-1) là ước lẻ.
Ta có bảng sau
\(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\\ 2xy-54=1\\ 2xy=55\\ xy=\frac{55}{2}\). Điều kiện của x, y là gì bạn ?, nếu ko có dk thì bài này ko làm được đâu