Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x=1 ; y = 1/2 vào biểu thức \(x^2y^3+xy\)ta được :
\(1^2\frac{1}{2}^2+1.\frac{1}{2}\)= \(1.\frac{1}{4}+1.\frac{1}{2}=\frac{1}{4}+\frac{1}{2}\) \(=\frac{1}{4}+\frac{2}{4}=\frac{3}{4}\)
Vậy gí tringj của biểu thức trên là \(\frac{3}{4}\) tại x= 1 ; y = 1/2
Đúng chưa nhể :)
thay x=1,y=1/2 vào biểu thức,ta có:
\(x^2y^3+xy\)= \(1^3.\left(\begin{cases}1\\2\end{cases}\right)^3\)+ 1.\(\frac{1}{2}\)= 1.\(\frac{1}{8}+\frac{1}{2}=\frac{1}{8}+\frac{4}{8}=\frac{1+4}{8}=\frac{5}{8}\)
vậy giá trị của biểu thức \(x^2y^3+xy\)tại x=1 và y=\(\frac{1}{2}\)là \(\frac{5}{8}\)
a)Ta có : 2x+2y-z-7=0 => 2x+2y-z=7
Ta có : \(x=\frac{y}{2}=>\frac{x}{2}=\frac{y}{4}\)
Mà \(\frac{y}{4}=\frac{z}{5}\)nên \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}=\frac{2x+2y-z}{4+8-5}=\frac{7}{7}=1\)
Từ \(\frac{x}{2}=1=>x=2\)
Từ\(\frac{y}{4}=1=>y=4\)
Từ \(\frac{z}{5}=1=>z=5\)
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}\)
Mình làm 1 phép thôi nha những phép còn lại bạn tự nghĩ nhé !
\(\frac{x}{7}=\frac{y}{3}\) và \(x-24=y\)'
Ta có : \(x-24=y\) hay cũng có thể viết \(x-y=24\)
Ta lại có : \(\frac{x}{7}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau nên ta được :
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{24}{4}=6\) ( vì \(x-y=24\) )
\(\Rightarrow\frac{x}{7}=6\Rightarrow x=6\cdot7\Rightarrow x=42\)
\(\Rightarrow\frac{y}{3}=6\Rightarrow y=6\cdot3\Rightarrow y=18\)
Vậy \(x=42\) và \(y=18\)
a) Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{y-x}{3-2}=\frac{14}{1}=14\)
=> \(\begin{cases}x=28\\y=42\end{cases}\)
b) Từ 2x = 7y => \(\frac{2x}{14}=\frac{7y}{14}\Rightarrow\frac{x}{7}=\frac{y}{2}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{7}=\frac{y}{2}=\frac{x+y}{7+2}=\frac{36}{9}=4\)
=> \(\begin{cases}x=28\\y=8\end{cases}\)
c) Từ \(\frac{x}{y}=\frac{3}{7}\Rightarrow\frac{x}{7}=\frac{y}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{7}=\frac{y}{3}=\frac{y-x}{3-7}=\frac{20}{-4}=-5\)
=> \(\begin{cases}x=-35\\y=-15\end{cases}\)
d) Đặt \(\frac{x}{2}=\frac{y}{3}=k\Rightarrow\begin{cases}x=2k\\y=3k\end{cases}\)
Vì xy = 24 => 2k.3k = 24 => 6k2 = 24 => k2 = 4 => k = \(\pm\) 2
Với k = 2 => \(\begin{cases}x=4\\y=6\end{cases}\)
Với k = -2 => \(\begin{cases}x=-4\\y=-6\end{cases}\)
\(\left|x+\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|+\left|z-1\right|=0\) \(0\)
<=> \(\hept{\begin{cases}x+\frac{1}{2}=0\\y-\frac{3}{4}=0\\z-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{3}{4}\\z=1\end{cases}}\)
\(\left|x-\frac{3}{4}\right|+\left|\frac{2}{5}-y\right|+\left|x-y+z\right|=0\)
<=> \(\hept{\begin{cases}x-\frac{3}{4}=0\\\frac{2}{5}-y=0\\x-y+z=0\end{cases}}\)
<=>\(\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\\frac{3}{4}-\frac{2}{5}+z=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{2}{5}\\z=\frac{-7}{20}\end{cases}}\)
\(\left|x-\frac{2}{3}\right|+\left|x+y+\frac{3}{4}\right|+\left|y-z-\frac{5}{6}\right|=0\)
<=> \(\hept{\begin{cases}x-\frac{2}{3}=0\\x+y+\frac{3}{4}=0\\y-z-\frac{5}{6}=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{2}{3}\\y=\frac{-17}{12}\\z=\frac{-9}{4}\end{cases}}\)
\(\left|x-\frac{1}{2}\right|+\left|xy-\frac{3}{4}\right|+\left|2x-3y-z\right|=0\)
<=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\xy-\frac{3}{4}=0\\2x-3y-z=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{4}:\frac{1}{2}=\frac{3}{2}\\z=\frac{-7}{2}\end{cases}}\)
các câu còn lại tương tự
a) Xem lại đề
b) Ta có: \(2x=4y=5z\)=> \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}}\) => \(\frac{2x}{1}=\frac{3y}{\frac{3}{4}}=\frac{z}{\frac{1}{5}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{1}=\frac{3y}{\frac{3}{4}}=\frac{z}{\frac{1}{5}}=\frac{2x-3y-z}{1-\frac{3}{4}-\frac{1}{5}}=\frac{1}{\frac{1}{20}}=20\)
=> \(\hept{\begin{cases}\frac{x}{\frac{1}{2}}=20\\\frac{y}{\frac{1}{4}}=20\\\frac{z}{\frac{1}{5}}=20\end{cases}}\) => \(\hept{\begin{cases}x=20.\frac{1}{2}=10\\y=20.\frac{1}{4}=5\\z=20.\frac{1}{5}=4\end{cases}}\)
Vậy x = 10; y = 5 và z = 4
a)\(\frac{x}{5}=\frac{y}{6};\frac{y}{2}=\frac{z}{3}\)va \(x^3-2x^2y+z^3\)
Bài 2:
1)
a) \(\frac{3}{5}-x=25\%\)
=> \(\frac{3}{5}-x=\frac{1}{4}\)
=> \(x=\frac{3}{5}-\frac{1}{4}\)
=> \(x=\frac{7}{20}\)
Vậy \(x=\frac{7}{20}.\)
b) \(0,16:x=x:36\)
=> \(\frac{0,16}{x}=\frac{x}{36}\)
=> \(0,16.36=x.x\)
=> \(x.x=\frac{144}{25}\)
=> \(x^2=\frac{144}{25}\)
=> \(\left[{}\begin{matrix}x=\frac{12}{5}\\x=-\frac{12}{5}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{12}{5};-\frac{12}{5}\right\}.\)
2)
a) Ta có: \(5x=7y.\)
=> \(\frac{x}{y}=\frac{7}{5}\)
=> \(\frac{x}{7}=\frac{y}{5}\) và \(y-x=18.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{18}{-2}=-9.\)
\(\left\{{}\begin{matrix}\frac{x}{7}=-9=>x=\left(-9\right).7=-63\\\frac{y}{5}=-9=>y=\left(-9\right).5=-45\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(-63;-45\right).\)
b) Ta có: \(\frac{x}{y}=0,8.\)
=> \(\frac{x}{y}=\frac{4}{5}\)
=> \(\frac{x}{4}=\frac{y}{5}\) và \(x+y=18.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{4}=\frac{y}{5}=\frac{x+y}{4+5}=\frac{18}{9}=2.\)
\(\left\{{}\begin{matrix}\frac{x}{4}=2=>x=2.4=8\\\frac{y}{5}=2=>y=2.5=10\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(8;10\right).\)
Mình chỉ làm thế này thôi nhé.
Chúc bạn học tốt!
a) x = 6 ; y = 15.
x = -6 ; y = -15.
b) x = 2 ; y = 2.
x = -2 ; y = -2.
a) Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
=> \(\begin{cases}x=6\\y=14\end{cases}\)
b) Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)
=> \(\begin{cases}x=10\\y=4\end{cases}\)
a) Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
\(\Rightarrow\begin{cases}x=2.3=6\\y=2.7=14\end{cases}\)
Vậy x = 6; y = 14
b) Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{6}{3}=2\)
\(\Rightarrow\begin{cases}x=2.5=10\\y=2.2=4\end{cases}\)
Vậy x = 10; y = 4