K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2020

Theo bài ra ta có:\(\frac{x}{3}=\frac{y}{4}\)và x + y = 14

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)

Từ \(\frac{x}{3}\)= 2 => x = 3 . 2 = 6

      \(\frac{y}{4}\)= 2 => y = 4 . 2 = 8

Vậy x = 6 và y = 8

31 tháng 10 2020

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)

\(\Rightarrow x=2.3=6\)\(y=2.4=8\)

Vậy \(x=6\)và \(y=8\)

24 tháng 9 2020

a) Vì |x - 3,5| ≥ 0∀x

|4,5 - y| ≥ 0∀y

=> |x - 3,5| + |4,5 - y| ≥ 0 ∀x,y

Dấu " = " xảy ra khi và chỉ khi |x - 3,5| = 0 hoặc |4,5 - y| = 0 => x = 3,5 hoặc y = 4,5

Vậy GTNN = 0 khi x = 3,5;y = 4,5

b) |x - 2| ≥ 0 ∀x

|3 - y| ≥ 0 ∀y

=> |x - 2| + |3 - y| ≥ 0 ∀x,y

Dấu " = " xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x-2=0\\3-y=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

Vậy GTNN = 0 <=> x = 2,y = 3

c) \(\left|x+\frac{2}{3}\right|+\left|y-\frac{3}{4}\right|+\left|z-5\right|=0\)

\(\left\{{}\begin{matrix}\left|x+\frac{2}{3}\right|\ge0\forall x\\\left|y-\frac{3}{4}\right|\ge0\forall y\\\left|z-5\right|\ge0\forall z\end{matrix}\right.\)

=> \(\left|x+\frac{2}{3}\right|+\left|y-\frac{3}{4}\right|+\left|z-5\right|\ge0\forall x,y,z\)

Dấu " = " xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\left|x+\frac{2}{3}\right|=0\\\left|y-\frac{3}{4}\right|=0\\\left|z-5\right|=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=-\frac{2}{3}\\x=\frac{3}{4}\\z=5\end{matrix}\right.\)

Vậy GTNN = 0 khi x = -2/3,y = 3/4,z = 5

Bài cuối tự làm :)))

7 tháng 9 2019

\(\left|\frac{15}{32}-x\right|\ge0;\left|\frac{4}{25}-y\right|\ge0;\left|z-\frac{14}{31}\right|\ge0\) với mọi x, y, z

=> \(\left|\frac{15}{32}-x\right|+\left|\frac{4}{25}-y\right|+\left|z-\frac{14}{31}\right|\ge0\)

Vì thế nên em kiểm tra lại đê bài nhé dấu \(\le\)hay dấu \(< \)

< cô Chi. Em xem lại trong sách rồi ạ

6 tháng 10 2017

a) \(\frac{2}{3}=\frac{-10}{x}\)

\(\Rightarrow2x=-30\)

\(\Rightarrow x=-15\)

6 tháng 10 2017

b) -2|x - 1| = \(\frac{-3}{4}\)

\(\Rightarrow\)|x - 1| = \(\frac{3}{8}\)

\(\Rightarrow\)x - 1 = \(\frac{3}{8}\)hoặc\(\frac{-3}{8}\)

\(\Rightarrow\)x = \(1\frac{3}{8}\)hoặc\(1\frac{-3}{8}\)

1 tháng 4 2018

=> x-y /35 = y-z/15 = z-x /21

Theo tính chất dãy tỉ số bằng nhau ta có:

x-y /35 = y-z/15 = z-x /21 = x-y + y-z + z-x / 35+15+21 = 0

=>x-y =0

   y-z =0

   z-x =0

=>x=y=z

 thay vào đẳng thức cầm c/m ta có 2 vế đều = 0 vì y-x=0 và z-y=0 (do x=y=z)

31 tháng 8 2017

Ta có : \(\frac{x+1}{x-4}>0\) 

Thì sảy ra 2 trường hợp 

Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4 

Vậy x > 4 

Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4 

Vậy x < (-1) . 

31 tháng 8 2017

Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)

Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)

Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)

19 tháng 3 2017

Đặt \(\frac{3\left|x\right|+5}{3}=\frac{3\left|y\right|-1}{5}=\frac{3-z}{7}=k\)

\(\Rightarrow\left|x\right|=\frac{3k-5}{3}\Rightarrow2\left|x\right|=\frac{6k-10}{3}\)

\(\Rightarrow\left|y\right|=\frac{5k+1}{3}\Rightarrow7\left|y\right|=\frac{35k+7}{3}\)

\(\Rightarrow z=3-7k\Rightarrow3z=9-21k\)

Vì \(2\left|x\right|+7\left|y\right|+3z=-14\)\(\Rightarrow\frac{6k-10}{3}+\frac{35k+7}{3}+\left(9-21k\right)=-14\)

\(\Rightarrow\frac{\left(6k-10\right)+\left(35k+7\right)+\left(27-63k\right)}{3}=-14\)

\(\Rightarrow\frac{-22k+24}{3}=-14\)

\(\Rightarrow-22k+24=-42\)

\(\Rightarrow k=\frac{-42-24}{22}=3\)

\(\Rightarrow\left|x\right|=\frac{3.3-5}{3}=\frac{4}{3}\Rightarrow x=-\frac{4}{3};\frac{4}{3}\)

\(\Rightarrow\left|y\right|=\frac{5.3+1}{3}=\frac{16}{3}\Rightarrow y=-\frac{16}{3};\frac{16}{3}\)

\(\Rightarrow z=3-7.3=-18\)