K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2020

\(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)

\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)

\(\Leftrightarrow\frac{x\left(x+2\right)-\left(x-2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)\(\Leftrightarrow x\left(x+2\right)-\left(x-2\right)=2\)

\(\Leftrightarrow x^2+2x-x+2=2\)\(\Leftrightarrow x^2+x=0\)\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

So sánh với ĐKXĐ ta thấy: \(x=0\)không thoả mãn

Vậy tập nghiệm của phương trình là \(S=\left\{-1\right\}\)

6 tháng 3 2020

Ta có: \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)

   \(\Leftrightarrow\frac{x.\left(x+2\right)-\left(x-2\right)}{\left(x-2\right).x}=\frac{2}{x^2-2x}\)

   \(\Leftrightarrow\frac{x^2+2x-x+2}{x^2-2x}=\frac{2}{x^2-2x}\)

    \(\Rightarrow x^2+x+2=2\)

   \(\Leftrightarrow x^2+x=0\)

   \(\Leftrightarrow x.\left(x+1\right)=0\)

   \(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Vậy \(S=\left\{-1;0\right\}\)

6 tháng 3 2020

Mình thiếu điều kiện xác định ^_^

Cho mình bổ xung thêm

\(ĐKXĐ:x\ne\pm1\)

và mình sửa lại nữa là: \(\orbr{\begin{cases}x=-1\left(L\right)\\x=-3\left(TM\right)\end{cases}}\)

Vậy \(S=\left\{-3\right\}\)

6 tháng 3 2020

\(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{x^2+3}{1-x^2}\) đkxđ \(x\ne\pm1\)

\(\Leftrightarrow\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}=\frac{-x^2-3}{\left(x+1\right)\left(x-1\right)}\)

\(\Leftrightarrow x^2+2x+1-x^2-2x-1+x^2+3=0\)

\(\Leftrightarrow x^2+3=0\)

\(\Leftrightarrow x^2=-3\)

\(\Leftrightarrow x\in\varnothing\)

6 tháng 3 2020

\(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{4x}{x^2-1}\)  (1)

điều kiện xác định: \(x\ne\pm1\)

(1) => \(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{4x}{\left(x-1\right)\left(x+1\right)}\)

\(\Leftrightarrow\frac{\left(x+1\right)^2-\left(x-1\right)^2-4x}{\left(x-1\right)\left(x+1\right)}=0\)

\(\Leftrightarrow\frac{\left(x+1+x-1\right)\left(x+1-x+1\right)-4x}{\left(x-1\right)\left(x+1\right)}=0\)

\(\Leftrightarrow\frac{2x.2-4x}{\left(x-1\right)\left(x+1\right)}=0\)

\(\Leftrightarrow\frac{0x}{\left(x-1\right)\left(x+1\right)}=0\)

Vậy phương trình có nghiệm với mọi x \(\ne\pm1\)

6 tháng 3 2020

\(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{4x}{x^2-1}\)đkxđ \(x\ne\pm1\)

\(\Leftrightarrow x^2+2x+1-x^2-2x-1-4x=0\)

\(\Leftrightarrow-4x=0\)

\(\Leftrightarrow x=0\)

16 tháng 4 2020

Đkxđ: \(\hept{\begin{cases}x\ne2\\x\ne0\end{cases}}\)

\(\frac{x+3}{x-2}+\frac{x+2}{x}=2\) 

\(\Leftrightarrow\frac{x\left(x+3\right)}{x\left(x-2\right)}+\frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)x}=\frac{2x\left(x-2\right)}{x\left(x-2\right)}\)

\(\Rightarrow x\left(x+3\right)+\left(x-2\right)\left(x+2\right)=2x\left(x-2\right)\)

\(\Leftrightarrow x^2+3x+x^2-4=2x^2-4x\)

\(\Leftrightarrow x^2+3x+x^2-2x^2+4x=4\)

\(\Leftrightarrow7x=4\)

\(\Leftrightarrow x=\frac{4}{7}\)

7 tháng 3 2020

\(ĐKXĐ:x\ne-1;x\ne\frac{2}{3}\)

\(pt\Leftrightarrow\frac{7x-2\left(x+1\right)+\left(3x-2\right)}{\left(3x-2\right)\left(x+1\right)}=1\)

\(\Leftrightarrow7x-2\left(x+1\right)+\left(3x-2\right)=\left(3x-2\right)\left(x+1\right)\)

\(\Leftrightarrow8x-4=3x^2-2x+3x-2\)

\(\Leftrightarrow3x^2-7x+2=0\)

\(\Delta=7^2-4.3.2=25,\sqrt{\Delta}=5\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{7+5}{6}=2\\x=\frac{7-5}{6}=\frac{1}{3}\end{cases}}\)

Tự cho đkxđ nha!!!

<=> \(\frac{x+1-x}{x+1}=\frac{7x}{\left(3x-2\right)\left(x+1\right)}-\frac{2}{3x-2}\)

<=> \(\frac{3x-2}{\left(3x-2\right)\left(x+1\right)}=\frac{7x}{\left(3x-2\right)\left(x+1\right)}-\frac{2\left(x+1\right)}{\left(3x-2\right)\left(x+1\right)}\)

<=> \(\frac{7x-2x-2-3x+2}{\left(3x-2\right)\left(x+1\right)}=0\)

<=> \(\frac{2x}{\left(3x-2\right)\left(x+1\right)}=0\)

=> 2x = 0

<=> x = 0 (TM)

Vậy ...

7 tháng 3 2020

\(\frac{x+5}{x-5}+\frac{x-5}{x+5}=\frac{2\left(x^2+25\right)}{x^2-25}\left(x\ne\pm5\right)\)

\(\Leftrightarrow\frac{x+5}{x-5}+\frac{x-5}{x+5}-\frac{2\left(x^2+25\right)}{\left(x-5\right)\left(x+5\right)}=0\)

\(\Leftrightarrow\frac{\left(x+5\right)^2}{\left(x-5\right)\left(x+5\right)}+\frac{\left(x-5\right)^2}{\left(x-5\right)\left(x+5\right)}-\frac{2x^2+50}{\left(x-5\right)\left(x+5\right)}=0\)

\(\Leftrightarrow\frac{x^2+10x+25}{\left(x-5\right)\left(x+5\right)}+\frac{x^2-10x+25}{\left(x-5\right)\left(x+5\right)}-\frac{2x^2+50}{\left(x-5\right)\left(x+5\right)}=0\)

\(\Leftrightarrow\frac{x^2+10x+25+x^2-10x+25-2x^2-50}{\left(x-5\right)\left(x+5\right)}=0\)

\(\Rightarrow\frac{0}{\left(x-5\right)\left(x+5\right)}=0\)

=> PT đúng với mọi x khác \(\pm5\)

Refund QB nhìn logic :V 

\(\frac{x+5}{x-5}+\frac{x-5}{x+5}=\frac{2\left(x^2+25\right)}{x^2-25}\)

\(\frac{x+5}{x-5}+\frac{x-5}{x+5}=\frac{2\left(x^2+25\right)}{\left(x+5\right)\left(x-5\right)}\)

\(\left(x+5\right)^2-\left(x-5\right)^2=2\left(x^2+25\right)\)

\(20x=2x^2+50\)

\(20x-2x^2-50=0\)

\(2\left(10x-x^2-25\right)=0\)

\(-x^2+10x+25=0\)

\(x^2-10x+25=0\)

\(x^2-2\left(x\right)\left(5\right)+5^2=0\)

\(\left(x-5\right)^2=0\)

\(x-5=0\Leftrightarrow x=5\)

7 tháng 3 2020

\(ĐKXĐ:x\ne\pm3\)

\(pt\Leftrightarrow\frac{\left(x+3\right)^2-\left(x-3\right)^2}{x^2-9}=\frac{17}{x^2-9}\)

\(\Leftrightarrow\left(x+3\right)^2-\left(x-3\right)^2=17\)

7 tháng 3 2020

Tự dừng bấm Gửi tl

\(\Leftrightarrow x^2+6x+9-x^2+6x-9=17\)

\(\Leftrightarrow12x=17\Leftrightarrow x=\frac{17}{12}\)

Bài làm

2+4+...+2016+2018/1019090 = -3x² - 4x

Ta có: số số hạng tử của phân số 2+4+...+2016+2018/1019090 là:( 2018 - 2 ) : 2 + 1 = 1009 ( số hạng)

Tổng của tử đó là: ( 2018 + 2 ) . 1009 : 2 = 1019090

=> Ta được: 1019090/1019090 = -3x² - 4x

<=> -3x² - 4x = 1

<=> -3x² - 4x - 1 = 0

<=> -3x² - 3x - x - 1 = 0

<=> -3x( x + 1 ) -( x + 1 ) = 0

<=> ( x + 1 )( -3x - 1 ) = 0

<=> x + 1 = 0 hoặc -3x - 1 = 0

<=> x = -1 hoặc x = 1/-3

Vậy nghiệm phương trình là: S = { -1; -1/3 }

25 tháng 2 2020

ĐKXĐ : \(x\ne2,x\ne4\)

Pt \(\Leftrightarrow\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}-12\left(\frac{x-2}{x-4}\right)^2=0\) (2)

Đặt  \(\frac{x+1}{x-2}=a,\frac{x-2}{x-4}=b\Rightarrow ab=\frac{x+1}{x-4}\)

Khi đó pt (2) trở thành :

\(a^2+ab-12b=0\)

\(\Leftrightarrow a^2-3ab+4ab-12b=0\)

\(\Leftrightarrow a\left(a-3b\right)+4b\left(a-3b\right)=0\)

\(\Leftrightarrow\left(a-3b\right)\left(a+4b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=3b\\a=-4b\end{cases}}\)

Bạn thay vào tính, được nghiệm là \(S=\left\{3,\frac{4}{3}\right\}\)