\(\frac{x+2}{89}+\frac{x+5}{86}>\frac{x+8}{83}+\frac{x+11}{80}\)                     ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2016

Cộng thêm 1 vào 2 vế ta đc:

\(\left(\frac{x+2}{89}+1\right)+\left(\frac{x+5}{86}+1\right)>\left(\frac{x+8}{83}+1\right)+\left(\frac{x+11}{80}+1\right)\)

\(\Leftrightarrow\frac{x+91}{89}+\frac{x+91}{86}>\frac{x+91}{83}+\frac{x+91}{80}\)

\(\Leftrightarrow\frac{x+91}{89}+\frac{x+91}{86}-\frac{x+91}{83}-\frac{x+91}{80}>0\)

\(\Leftrightarrow\left(x+91\right).\left(\frac{1}{89}+\frac{1}{86}-\frac{1}{83}-\frac{1}{80}\right)>0\)

\(\frac{1}{89}+\frac{1}{86}-\frac{1}{83}-\frac{1}{80}<0\)

=>x+91<0

=>x<-91

Vậy.......................

16 tháng 4 2018

\(a)\) \(3-2x>4x+5\)

\(\Leftrightarrow\)\(3-2x+2x>4x+2x+5\)

\(\Leftrightarrow\)\(6x+5< 3\)

\(\Leftrightarrow\)\(6x+5-5< 3-5\)

\(\Leftrightarrow\)\(6x< -2\)

\(\Leftrightarrow\)\(\frac{6x}{6}< \frac{-2}{6}\)

\(\Leftrightarrow\)\(x< \frac{-1}{3}\)

Vậy \(x< \frac{-1}{3}\)

Chúc bạn học tốt ~ 

13 tháng 12 2018

\(\dfrac{x+2}{89}+\dfrac{x+5}{86}>\dfrac{x+8}{83}+\dfrac{x+11}{80}\)

\(\Leftrightarrow\dfrac{x+91}{89}+\dfrac{x+91}{86}>\dfrac{x+91}{83}+\dfrac{x+91}{80}\)

\(\Leftrightarrow\left(x+91\right)\left(\dfrac{1}{89}+\dfrac{1}{86}\right)>\left(x+91\right)\left(\dfrac{1}{83}+\dfrac{1}{80}\right)\)

\(\dfrac{1}{89}+\dfrac{1}{86}< \dfrac{1}{83}+\dfrac{1}{80}\)

Nên \(x+91< 0\Leftrightarrow x< -91\)

ta có:

\(\frac{x+2}{2013}+\frac{x+5}{2010}>\frac{x+8}{2007}+\frac{x+11}{2004}\)

\(\Leftrightarrow\left(\frac{x+2}{2013}+1\right)+\left(\frac{x+5}{2010}+1\right)>\left(\frac{x+8}{2007}+1\right)+\left(\frac{x+11}{2004}+1\right)\)

\(\Leftrightarrow\frac{x+2015}{2013}+\frac{x+2015}{2010}>\frac{x+2015}{2007}+\frac{x+2015}{2004}\)

\(\Leftrightarrow\frac{x+2015}{2013}+\frac{x+2015}{2010}-\frac{x+2015}{2007}-\frac{x+2015}{2004}>0\)

\(\Leftrightarrow\left(x+2015\right)\left(\frac{1}{2013}+\frac{1}{2010}-\frac{1}{2007}-\frac{1}{2004}\right)>0\)

\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x+2015>0\\\frac{1}{2013}+\frac{1}{2010}-\frac{1}{2007}-\frac{1}{2004}>0\end{cases}}\\\hept{\begin{cases}x+2015< 0\\\frac{1}{2013}+\frac{1}{2010}-\frac{1}{2007}-\frac{1}{2004}< 0\end{cases}}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x+2015>0\\\frac{1}{2013}+\frac{1}{2010}-\frac{1}{2007}-\frac{1}{2004}>0\end{cases}}\\\hept{\begin{cases}x+2015< 0\\\frac{1}{2013}+\frac{1}{2010}-\frac{1}{2007}-\frac{1}{2004}< 0\end{cases}}\end{cases}}\)

17 tháng 2 2018

b, \(\frac{3x-2}{5}\ge\frac{x+1,6}{2}\)

=> \(6x-4\ge5x+8\)

=> \(x-12\ge0\)

=> \(x\ge12\)

bpt 2: \(\frac{6-2x+5}{6}>\frac{3-x}{4}\)

=> \(\frac{11-2x}{6}>\frac{3-x}{4}\)

=> \(44-8x>18-6x\)

=> \(x< 13\)

Vậy để t/m cả 2 bpt thì : \(12\le x< 13\)

17 tháng 2 2018

a, \(\frac{x^2+x^2-4}{x\left(x-2\right)}>2\) (Đk : \(x\ne\left(0;2\right)\))

=> \(2x^2-4>2x^2-4x\)

=> \(4x-4=4\left(x-1\right)>0\)

=> \(x>1\)(t/m) 

30 tháng 12 2018

\(\Leftrightarrow\left(\frac{x+14}{86}+1\right)+\left(\frac{x+15}{85}+1\right)+\left(\frac{x+16}{84}+1\right)+\left(\frac{x+17}{83}+1\right)+\left(\frac{166}{4}-4\right)=0\)

\(\Leftrightarrow\frac{x+100}{86}+\frac{x+100}{85}+\frac{x+100}{84}+\frac{x+100}{83}+\frac{x+100}{4}=0\)

\(\Leftrightarrow\left(x+100\right).\left(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)=0\)

\(\Leftrightarrow\left(x+100\right)=0\Rightarrow x=-100\left(\text{vì }\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)\ne0\)

1 tháng 4 2017

a, \(\Rightarrow\)\(1+\frac{x+3}{2011}\)\(+1+\frac{x+1}{2013}\)\(\ge1+\frac{x+10}{2004}+1+\frac{x+13}{2001}\)

\(\Rightarrow\)\(\frac{2011+x+3}{2011}+\frac{2013+x+1}{2013}\ge\frac{2004+x+10}{2004}+\frac{2001+x+13}{2001}\)

\(\Rightarrow\)\(\frac{2014+x}{2011}+\frac{2014+x}{2013}\ge\frac{2014+x}{2004}+\frac{2014+x}{2001}\)

\(\Rightarrow\)\(\frac{2014+x}{2011}+\frac{2014+x}{2013}-\frac{2014+x}{2004}+\frac{2014+x}{2001}\ge0\)

\(\Rightarrow\)\(\left(2014+x\right)\left(\frac{1}{2011}+\frac{1}{2013}-\frac{1}{2004}-\frac{1}{2001}\right)\)\(\ge0\)

\(do\)\(\frac{1}{2011}+\frac{1}{2013}-\frac{1}{2004}-\frac{1}{2001}< 0\)

\(\Rightarrow\)\(2014+x\le0\)

\(\Rightarrow\)\(x\le-2014\)

11 tháng 6 2017

1)

a) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}< =>\frac{2\left(x+5\right)}{2\left(3x-6\right)}-\frac{3x-6}{2\left(3x-6\right)}=\frac{3\left(2x-3\right)}{3\left(2x-4\right)}.\)

(đk:x khác \(\frac{1}{2}\))

\(\frac{2x+10}{6x-12}-\frac{3x-6}{6x-12}=\frac{6x-9}{6x-12}< =>2x+10-3x+6=6x-9< =>x=\frac{25}{7}\)

Vậy x=\(\frac{25}{7}\)

b) /7-2x/=x-3 \(x\ge\frac{7}{2}\)

(đk \(x\ge3,\frac{7}{2}< =>x\ge\frac{7}{2}\))

\(\Rightarrow\orbr{\begin{cases}7-2x=x-3\\7-2x=-\left(x-3\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{10}{3}\left(< \frac{7}{2}\Rightarrow l\right)\\x=4\left(tm\right)\end{cases}}}\)

Vậy x=4

2)

\(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}>\frac{x-4}{5}+\frac{x-5}{6}\)

\(\Leftrightarrow\frac{30\left(x-1\right)}{60}+\frac{20\left(x-2\right)}{60}+\frac{15\left(x-3\right)}{60}-\frac{12\left(x-4\right)}{60}-\frac{10\left(x-5\right)}{60}>0\)

\(\Leftrightarrow30x-30+20x-40+15x-45-12x+48-10x+50>0\Leftrightarrow43x-17>0\Leftrightarrow x>\frac{17}{43}\)

7 tháng 1 2019

\(\frac{x+14}{86}+\frac{x+15}{85}+\frac{x+16}{84}+\frac{x+14}{83}+\frac{x+116}{4}=0\)

\(\frac{x+14}{86}+1+\frac{x+15}{85}+1+\frac{x+16}{84}+1+\frac{x+14}{83}+1+\frac{x+116}{4}-4=0\)

\(\frac{x+14+86}{86}+\frac{x+15+85}{85}+\frac{x+16+84}{84}+\frac{x+14+83}{83}+\frac{x+116-16}{4}=0\)

\(\frac{x+100}{86}+\frac{x+100}{85}+\frac{x+100}{84}+\frac{x+100}{83}+\frac{x+100}{4}=0\)

\(\left(x+100\right)\left(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)=0\)

Vì \(\left(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)\ne0\)

\(\Rightarrow x+100=0\)

\(\Rightarrow x=-100\)

Vậy........