Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{2018}+\frac{x+2}{2017}+\frac{x+3}{2016}=\frac{x+4}{2015}+\frac{x+5}{2014}+\frac{x+6}{2013}\)
\(\Leftrightarrow\) \(\frac{x+1}{2018}+1+\frac{x+2}{2017}+1+\frac{x+3}{2016}+1=\frac{x+4}{2015}+1+\frac{x+5}{2014}+1+\frac{x+6}{2013}+1\)
\(\Leftrightarrow\frac{x+2019}{2018}+\frac{x+2019}{2017}+\frac{x+2019}{2016}=\frac{x+2019}{2015}+\frac{x+2019}{2014}+\frac{x+2019}{2013}\)
\(\Leftrightarrow\frac{x+2019}{2018}+\frac{x+2019}{2017}+\frac{x+2019}{2016}-\frac{x+2019}{2015}-\frac{x+2019}{2014}-\frac{x+2019}{2013}=0\)
\(\Leftrightarrow\left(x+2019\right)\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\right)\)\(=0\)
Lại có: \(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\) \(\ne\) \(0\)
\(\Rightarrow x+2019=0\)
\(\Rightarrow x=0-2019=-2019\)
Vậy x= -2019
\(\Leftrightarrow\left(\frac{x+4}{2013}+1\right)+\left(\frac{x+3}{2014}+1\right)=\left(\frac{x+2}{2015}+1\right)+\left(\frac{x+1}{2016}+1\right)\)
\(\Leftrightarrow\frac{x+2017}{2013}+\frac{x+2017}{2014}-\frac{x+2017}{2015}-\frac{x+2017}{2016}=0\)
\(\Leftrightarrow\left(x+2017\right)\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{2016}\right)=0\)
Vì \(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{2016}\ne0\)
\(\Rightarrow x+2017=0\Rightarrow x=-2017\)
\(\frac{x+2}{2013}+\frac{x+1}{2014}=\frac{x}{2015}+\frac{x-1}{2016}\)
\(\Leftrightarrow\)\(\frac{x+2}{2013}+1+\frac{x+1}{2014}+1=\frac{x}{2015}+1+\frac{x-1}{2016}+1\)
\(\Leftrightarrow\frac{x+2015}{2013}+\frac{x+2015}{2014}=\frac{x+2015}{2015}+\frac{x+2015}{2016}\)
\(\Leftrightarrow\left(x+2015\right)\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{2016}\right)=0\)
Do\(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{2016}>0\)
=>x+2015=0
<=>x=-2015
=> \(\frac{x+2015-2013}{2013}+\frac{x+2015-2014}{2014}=\frac{x+2015-2015}{2015}+\frac{x+2015-2016}{2016}\)
<=> \(\frac{x+2015}{2013}-1+\frac{x+2015}{2014}-1=\frac{x+2015}{2015}-1+\frac{x+2015}{2016}-1\)
<=> \(\frac{x+2015}{2013}+\frac{x+2015}{2014}-\frac{x+2015}{2015}-\frac{x+2015}{2016}=0\)
<=> \(\left(x+2015\right).\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{2016}\right)=0\)
<=> x + 2015 = 0 Vì \(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{2016}\ne0\)
<=> x = -2015
\(\frac{x+1}{2016}-\frac{x+2}{2015}=\frac{x+2017}{2014}\)
\(\frac{x+1+2016}{2016}-\frac{x+2+2015}{2015}-\frac{x+2017}{2014}=0\)
\(\frac{x+2017}{2016}-\frac{x+2017}{2015}-\frac{x+2017}{2014}=0\)
\(\left(x+2017\right)\left(\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}\right)=0\)
Vì \(\left(\frac{1}{2016}-\frac{1}{2015}-\frac{1}{2014}\right)\ne0\)
\(\Rightarrow x+2017=0\)
\(\Rightarrow x=-2017\)
\(\frac{x+2}{2015}+\frac{x+1}{2016}=\frac{x+3}{2014}+\frac{x+4}{2013}\)
=> \(\left(\frac{x+2}{2015}+1\right)+\left(\frac{x+1}{2016}+1\right)=\left(\frac{x+3}{2014}+1\right)+\left(\frac{x+4}{2013}+1\right)\)
=> \(\frac{x+2017}{2015}+\frac{x+2017}{2016}=\frac{x+2017}{2014}+\frac{x+2017}{2013}\)
=> (x + 2017)(1/2015 + 1/2016 - 1/2014 - 1/2013) = 0
=> x + 2017 = 0
=> x = -2017
\(\frac{x+2}{2015}+\frac{x+1}{2016}=\frac{x+3}{2014}+\frac{x+4}{2013}\)
\(\Leftrightarrow\frac{x+2}{2015}+1+\frac{x+1}{2016}+1=\frac{x+3}{2014}+1+\frac{x+4}{2013}+1\)
\(\Leftrightarrow\frac{x+2017}{2015}+\frac{x+2017}{2016}=\frac{x+2017}{2014}+\frac{x+2017}{2013}\)
\(\Leftrightarrow\left(x+2017\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2014}-\frac{1}{2013}\right)=0\)
Dễ thấy cái ngoặc to < 0
=> x=-2017
\(\left(\frac{x+4}{2014}+1\right)+\left(\frac{x+3}{2015}+1\right)=\left(\frac{x+2}{2016}+1\right)+\left(\frac{x+1}{2017}+1\right)\)
\(\frac{x+2018}{2014}+\frac{x+2018}{2015}-\frac{x+2018}{2016}+\frac{x+2018}{2017}=0\)
\(x+2018.\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\right)=0\)
\(\Rightarrow x+2018=0\)
\(\Rightarrow x=-2018\)
\(\frac{x+4}{2014}+\frac{x+3}{2015}=\frac{x+2}{2016}+\)\(\frac{x+1}{2017}\)
\(\Rightarrow\left(\frac{x+4}{2014}+1\right)+\left(\frac{x+3}{2015}+1\right)=\left(\frac{x+2}{2016}+1\right)+\left(\frac{x+1}{2017}+1\right)\)
\(\Rightarrow\frac{x+2018}{2014}+\frac{x+2018}{2015}=\frac{x+2018}{2016}+\frac{x+2018}{2017}\)
\(\Rightarrow\frac{x+2018}{2014}+\frac{x+2018}{2015}-\frac{x+2018}{2016}-\frac{x+2018}{2017}=0\)
\(\Rightarrow\left(x+2018\right)\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)=0\)
\(M\text{à:}\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2016}-\frac{1}{2017}\ne0\)
\(\Rightarrow x+2018=0\Rightarrow x=-2018\)
x=-1
Ngắn gọn, k nhé