Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{10}=\frac{y}{5}\Rightarrow\frac{x}{20}=\frac{y}{10}\)
\(\frac{y}{2}=\frac{z}{3}\Rightarrow\frac{y}{10}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{20}=\frac{y}{10}=\frac{z}{15}=\frac{2x}{40}=\frac{3y}{30}=\frac{4z}{60}=\frac{2x-3y+4z}{40-30+60}=\frac{330}{70}=\frac{33}{7}\)
(tính chất dãy tỉ số bằng nhau)
\(\Rightarrow x=\frac{33}{7}.20;\text{ }y=\frac{33}{7}.10;\text{ }z=\frac{33}{7}.15\)
Ta có: \(\frac{x}{10}=\frac{y}{5}\Rightarrow\frac{x}{20}=\frac{y}{10};\frac{y}{2}=\frac{z}{3}\Rightarrow\frac{y}{10}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{20}=\frac{y}{10}=\frac{z}{15}=\frac{2x}{40}=\frac{3y}{30}=\frac{4z}{60}=\frac{2x-3y+4z}{40-30+60}=\frac{330}{70}=\frac{33}{7}\)
\(\frac{x}{20}=\frac{33}{7}\Rightarrow x=\frac{33\times20}{7}=\frac{660}{7}\)
\(\frac{y}{10}=\frac{33}{7}\Rightarrow y=\frac{33\times10}{7}=\frac{330}{7}\)
\(\frac{z}{15}=\frac{33}{7}\Rightarrow z=\frac{33\times15}{7}=\frac{495}{7}\)
\(\frac{x}{10}=\frac{y}{5}\Rightarrow\frac{x}{10.2}=\frac{y}{5.2}\Rightarrow\frac{x}{20}=\frac{y}{10}\left(1\right)\)
\(\frac{y}{2}=\frac{z}{5}\Rightarrow\frac{y}{2.5}=\frac{z}{5.5}\Rightarrow\frac{y}{10}=\frac{z}{25}\left(2\right)\)
Từ 1 và 2
\(\Rightarrow\frac{x}{20}=\frac{y}{10}=\frac{z}{25}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{20}=\frac{y}{10}=\frac{z}{25}\Rightarrow\frac{2x}{40}=\frac{3y}{30}=\frac{4z}{100}=\frac{2x-3y+4z}{40-30+100}=\frac{330}{110}=3\)
Do đó
\(\frac{x}{20}=3\Rightarrow x=60\)
\(\frac{y}{10}=3\Rightarrow y=30\)
\(\frac{z}{25}=3\Rightarrow z=75\)
\(\frac{x}{10}=\frac{y}{5};\frac{y}{2}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{20}=\frac{y}{10}=\frac{z}{25}\)
\(\Rightarrow\frac{2x}{40}=\frac{3y}{30}=\frac{4z}{100}\)
Áp dụng t/c dãy tỉ số = nha ta có ::
\(\frac{2x}{40}=\frac{3y}{30}=\frac{4z}{100}=\frac{2x-3y+4z}{40-30+100}=\frac{330}{110}=3\)
\(\Rightarrow\frac{2x}{40}=3\Rightarrow x=60\)
\(\Rightarrow\frac{3y}{30}=3\Rightarrow y=30\)
\(\Rightarrow\frac{4z}{100}=3\Rightarrow z=75\)
a
Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)
\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)
Thay vào,ta được:
\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)
\(\Leftrightarrow4k+2+9k+6-4k-3=50\)
\(\Leftrightarrow9k+5=50\)
\(\Leftrightarrow9k=45\)
\(\Leftrightarrow k=5\)
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)
\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)
\(\Rightarrow x=2\cdot2+1=5\)
\(y=4\cdot2-3=5\)
\(z=2\cdot6+5=17\)
Câu c tương tự như câu 1
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\Rightarrow x=27;y=36;z=60\)
b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
\(\Rightarrow x=18;y=24;z=30\)
c, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}=\frac{2x+3y-z-2-6+4}{4+9-4}=\frac{46}{9}\)
\(\Rightarrow x=\frac{101}{9};y=\frac{52}{3};z=\frac{220}{9}\)
d, Đặt \(x=2k;y=3k;z=5k\Rightarrow xyz=810\Rightarrow30k^3=810\)
\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)Với k = 3 thì \(x=6;y=9;z=15\)
\(a,\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\frac{x}{10}=2\Rightarrow x=10.2=20\)
\(\frac{y}{6}=2\Rightarrow y=2.6=12\)
\(\frac{z}{21}=2\Rightarrow z=21.2=42\)
\(d,\frac{x}{2}=\frac{y}{3}=k\)\(\Rightarrow x=2k;y=3k\)
\(\Rightarrow ab=2k.3k=6k^2=54\)
\(\Rightarrow k^2=9\Leftrightarrow k=3\)
\(\frac{x}{2}=3\Rightarrow x=6\)
\(\frac{y}{3}=3\Rightarrow y=9\)
a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy x = 20; y = 12; z = 42
b) Ta có: \(\frac{x}{3}=\frac{y}{4}\) => \(\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{20}=\frac{z}{28}\)
=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{125}{62}=\frac{125}{62}\)
=> \(\hept{\begin{cases}\frac{x}{15}=\frac{125}{62}\\\frac{y}{20}=\frac{125}{62}\\\frac{z}{28}=\frac{125}{62}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{125}{62}.15=\frac{1875}{62}\\y=\frac{125}{62}.20=\frac{1250}{31}\\z=\frac{125}{62}.28=\frac{1750}{31}\end{cases}}\)
Vậy ...
ta có:
\(\frac{x}{10}=\frac{y}{5}\Rightarrow\frac{x}{20}=\frac{y}{10}\)
\(\frac{y}{2}=\frac{z}{3}\Rightarrow\frac{y}{10}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{20}=\frac{y}{10}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x}{20}=\frac{y}{10}=\frac{z}{15}=\frac{2x}{40}=\frac{3y}{30}=\frac{4z}{60}\)\(=\frac{2x-3y+4z}{40-30+60}\)\(=\frac{330}{70}=\frac{33}{7}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{33}{7}.20=\frac{660}{7}\\y=\frac{33}{7}.10=\frac{330}{7}\\z=\frac{33}{7}.15=\frac{495}{7}\end{cases}}\)
x=660/7;y=330/7;c=495/7