Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-2\right):\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\right)=\frac{16}{9}\)
\(\left(x-2\right):\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)=\frac{16}{9}\)
\(\left(x-2\right):\frac{2}{9}=\frac{16}{9}\)
\(x-2=\frac{32}{91}\)
\(x=\frac{32}{91}+2\)
\(x=\frac{212}{91}\)
\(\frac{|x-2|}{12}\)\(+\)\(\frac{|x-2|}{20}+\)\(\frac{|x-2|}{30}+\)\(\frac{|x-2|}{42}\)\(=\frac{70^5}{2^3.21^6}\)
\(\Rightarrow|x-2|.\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)=\frac{2^5.5^5.7^5}{2^3.7^6.3^6}\)
\(\Rightarrow|x-2|.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)=\frac{2^2.5^5}{7.3^6}\)
\(\Rightarrow|x-2|.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)=\frac{4.5^5}{21.3^5}\)
\(\Rightarrow|x-2|\left(\frac{1}{3}-\frac{1}{7}\right)=\frac{4.5^5}{21.3^5}\)\(\Rightarrow|x-2|=\frac{5^5}{3^5}\)
ĐẾN ĐÂY DỄ RÙI TỰ GIẢI TIẾP
\(\left(x+50\%\right):\frac{7}{8}=\frac{5}{7}\)
\(\Rightarrow\left(x+\frac{1}{2}\right)=\frac{5}{7}.\frac{7}{8}\)
\(\Rightarrow x+\frac{1}{2}=\frac{5}{8}\)
\(\Rightarrow x=\frac{5}{8}-\frac{1}{2}\)
\(\Rightarrow x=\frac{1}{8}\)
Vậy...
Mình làm tiếp bài của bạn " I have a crazy idea "
b) \(\frac{25-x}{3}=\frac{15}{2}\)
Áp dụng tỉ lệ thức:
\(\left(25-x\right).2=15.3\)
\(\Rightarrow25-x=\frac{15.3}{2}=\frac{45}{2}\Leftrightarrow x=25-\frac{45}{2}=\frac{5}{2}\)
c) \(x-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}=1\)
\(\Rightarrow x-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)=1\)
\(\Rightarrow x-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)=1\)
\(\Rightarrow x-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}\right)=1\)
\(\Rightarrow x-\left(\frac{1}{1}-\frac{1}{7}\right)=1\Leftrightarrow x-\frac{6}{7}=1\Leftrightarrow x=1+\frac{6}{7}=\frac{13}{7}\)
b)
\(x-2.\left(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\right)=\frac{16}{9}\)
\(x-2\cdot\left(\frac{1}{3}-\frac{1}{9}\right)=\frac{16}{9}\)
\(x-2=\frac{16}{9}:\left(\frac{1}{3}-\frac{1}{9}\right)\)
\(x-2=8\)
=> x = 10
a)
\(A=\frac{1}{2}.\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\frac{2013}{2014}\cdot\frac{2014}{2015}\cdot\frac{2015}{2016}\)
\(A=\frac{1}{2016}\)
\(\Leftrightarrow\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\times\frac{x}{3}=\frac{5}{21}\)
\(\Leftrightarrow\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\times\frac{x}{3}=\frac{5}{21}\)
\(\Leftrightarrow\left(\frac{1}{2}-\frac{1}{7}\right)\times\frac{x}{3}=\frac{5}{21}\)
\(\Leftrightarrow\frac{5}{14}\times\frac{x}{3}=\frac{5}{21}\)
\(\Leftrightarrow\frac{x}{3}=\frac{2}{3}\)
\(\Leftrightarrow x=2\)
\(\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right).\frac{x}{3}=\frac{5}{21}\)
\(\Rightarrow\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right).\frac{x}{3}=\frac{5}{21}\)
\(\Rightarrow\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{6}-\frac{1}{7}\right).\frac{x}{3}=\frac{5}{21}\)
\(\Rightarrow\left(\frac{1}{2}-\frac{1}{7}\right).\frac{x}{3}=\frac{5}{21}\)
\(\Rightarrow\left(\frac{7}{14}-\frac{2}{14}\right).\frac{x}{3}=\frac{5}{21}\)
\(\Rightarrow\frac{5}{14}.\frac{x}{3}=\frac{5}{21}\)
\(\Rightarrow\frac{x}{3}=\frac{5}{21}:\frac{5}{14}\)
\(\Rightarrow\frac{x}{3}=\frac{2}{3}\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
a, 10+15+20+....+295+x.300+x=67
10+15+20+...+295+x(300+1)=67
10+15+20+...+295+x.301=67
8845+x.301=67
67-8845=x.301
-8878=x.301
x=-29/149/301
b,
\(\frac{1}{7.6}+\frac{1}{6.5}+\frac{1}{5.4}+\frac{1}{4.3}+\frac{1}{3.2}+\frac{1}{2.1}-\frac{1}{x+1}=\frac{59}{77}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}-\frac{1}{x+1}=\frac{59}{77}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}-\frac{1}{x+1}=\frac{59}{77}\)\(1-\frac{1}{7}-\frac{1}{x+1}=\frac{59}{77}\)
\(\frac{6}{7}-\frac{1}{x+1}=\frac{59}{77}\)
\(\frac{1}{x+1}=\frac{6}{7}-\frac{59}{77}\)
\(\frac{1}{x+1}=\frac{1}{11}\)
suy ra x+1=11
suy ra x=10
Ta có: \(\frac{x-2}{12}+\frac{x-2}{20}+\frac{x-2}{30}+\frac{x-2}{42}=42^5:\left(2^3\cdot21^6\right)\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)=\frac{2^5\cdot21^5}{2^3\cdot21^5\cdot21}\)
\(\Leftrightarrow\left(x-2\right)\cdot\frac{4}{21}=\frac{4}{21}\)
\(\Leftrightarrow x-2=1\)
hay x=3
Vậy: x=3
cảm mơn bn nhiều