K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

\(\Rightarrow\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

\(\Rightarrow\frac{2x+3y-z-5}{9}=\frac{x+1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) có 2x + 3y - z = 50

\(\Rightarrow\frac{50-5}{9}=5=\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

\(\Rightarrow\hept{\begin{cases}x-1=10\\y-2=15\\z-3=20\end{cases}\Rightarrow\hept{\begin{cases}x=11\\y=17\\z=23\end{cases}}}\)

3 tháng 3 2020

Trả lời:

Ta có:\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}\)\(=\frac{2x+3y-z-5}{9}\)(Tính chất dãy tỉ số bẳng nhau)

\(2x+3y-z=50\)

\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{50-5}{9}=\frac{45}{9}=5\)

\(\Rightarrow\hept{\begin{cases}2x-2=20\\3y-6=45\\z-3=20\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x=22\\3y=51\\z=23\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=11\\y=17\\z=23\end{cases}}\)

Vậy\(\hept{\begin{cases}x=11\\y=17\\z=23\end{cases}}\)

Hok tốt!

Vuong Dong Yet

3 tháng 3 2020

Ta có :

\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)

\(\Leftrightarrow\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12\left(x+y+z\right)}{18+16+15}=\frac{12\cdot49}{49}=12\) ( do \(x+y+z=49\) )

\(\Rightarrow\hept{\begin{cases}\frac{12x}{18}=12\\\frac{12y}{16}=12\\\frac{12z}{15}=12\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=18\\y=16\\z=15\end{cases}}\) ( thỏa mãn )

Vậy : \(\left(x,y,z\right)=\left(18,16,15\right)\)

3 tháng 3 2020

\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)

\(\Rightarrow\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)

\(\Rightarrow\frac{12x+12y+12z}{18+16+15}=\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)     

\(\Rightarrow\frac{12\left(x+y+z\right)}{49}=\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) có  x + y + z = 49

\(\Rightarrow\frac{12\cdot49}{49}=12=\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)

\(\Rightarrow\hept{\begin{cases}2x=36\\3y=48\\4z=60\end{cases}\Rightarrow\hept{\begin{cases}x=18\\y=16\\z=15\end{cases}}}\)

27 tháng 10 2016

Ta có:

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}\)

\(=\frac{\left(2x+3y-z\right)-5}{9}=\frac{50-5}{9}=\frac{45}{9}=5\)

\(\Rightarrow\begin{cases}x-1=2.5=10\\y-2=3.5=15\\z-3=4.5=20\end{cases}\)\(\Rightarrow\begin{cases}x=11\\y=17\\z=23\end{cases}\)

Vậy x = 11; y = 17; z = 23

27 tháng 10 2016

mk cám ơn bn nhìu ^^

15 tháng 1 2017

xin lỗi bạn nhé nhưng đây là tất cả những gì mình có thể giúp bạn nhưng mình chả biết có đúng hay không 

S = 1/2 + 1/3 + 1/4 +...... + 1/ n 

=> 1/ S = 2 + 3 + 4 +......+n 

=> 1 = ( 2+3+4 +......+ n)S 

=> 1 = ( 2+3+4+... +n) ( 1/2+1/3+.......+1/n) 

vì n thuộc n nên ( 2+3+4+...+ n)  sẽ là số nguyên 

=> 1/2 + 1/3 + 1/4 +... + 1/n không phải là số nguyên 

Giải thích vi ( 2+3+4+...+n)( 1/2+1/3+1/4+...+1/n) = 1 

có 2 Th để dấu bằng xảy ra là 

2+3+4+...+n và 1/2 + 1/3 +...+ 1/n cùng bằng 1 

Th2 2+3+ 4+ +...+n là phân số đảo ngược của 1/2+1/3+1/4+...+1/n 

Th1 không thể xảy ra vì 2=3+4=...+n khác 1 

nên Th2 xảy ra lúc đó thì 1/2 + 1/3 + 1/4 +....+ 1/n là phân số

16 tháng 1 2017

Cái này quá tổng quát lớp 7 đã học rồi cơ ah. Có thể dùng quy nạp để chứng minh

21 tháng 11 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x-1}{2}\) = \(\frac{y-2}{3}\) = \(\frac{z-3}{4}\) = \(\frac{2x-2}{4}\) = \(\frac{3y-6}{9}\) = \(\frac{z-3}{4}\)

= \(\frac{2x-2+3y-6-\left(z-3\right)}{4+9-4}\) = \(\frac{2x-2+3y-6-z+3}{9}\) = \(\frac{50-5}{9}\) = \(\frac{45}{9}\) = 5

Ta có: \(\frac{x-1}{2}\) = 5 => x - 1 = 10 => x = 11

\(\frac{y-2}{3}\) = 5 => y - 2 = 15 => y = 17

\(\frac{z-3}{4}\) = 5 => z - 3 = 20 => z = 23

Vậy x = 11 ; y = 17 ; z = 23

 

21 tháng 11 2016

a) \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)

\(\Rightarrow\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)

\(\Rightarrow\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}\)

Áp dụng tính chất dãy tỉ sô bằng nhau , ta có :

\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

\(\Rightarrow x^2=1;y^2=4;z^2=9\)

=> x = 1 hoặc -1

y = 2 hoặc -2

z = 3 hoặc -3

5 tháng 8 2016

1. Tìm x, y, z bik 3x = 2y, 7y = 5z và x-y+z = 32
Ta có 3x=2y => x/2=y/3 <=> x/10 = y/15 (1)
7y = 5z => z/7 = y/5 <=> z/21 = y/15 (2)
Từ 1 và 2 ta suy ra x/10 = y/15 = z/21 = (x-y+z)/(10-15+21) = 32/16 = 2
Vậy x = 10*2 = 20
y = 15*2 = 30
z = 21*2 = 42

23 tháng 3 2018

saiucchegianroibucminhhum

16 tháng 7 2018

\(a,\) \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)

\(7x=5z\Rightarrow\frac{x}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{z}{14}\left(2\right)\)

Từ (1) và (2) ta có: \(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}\) và \(x-y+z=32\)

Áp dụng t/c DTSBN ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}=\frac{x-y+z}{10-15+14}=\frac{32}{9}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{32}{9}\Rightarrow x=\frac{320}{9}\\\frac{y}{15}=\frac{32}{9}\Rightarrow y=\frac{160}{3}\\\frac{z}{14}=\frac{32}{9}\Rightarrow z=\frac{2560}{189}\end{cases}}\)

Vậy \(x=\frac{320}{9};y=\frac{160}{3};z=\frac{2560}{189}\)

các câu còn lại lm tương tự nhé

16 tháng 7 2018

uhm, tks bn

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)

Do đó: x-1=10; y-2=15; z-3=20

=>x=11; y=17; z=23

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó: x=18; y=16; z=15

c: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}\)

Trường hợp 1: 2x-3y+5z=-1

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{-1}{70}\)

Do đó: x=-15/70=-3/14; y=-10/70=-1/7; z=-14/70=-1/5

Trường hợp 2: 2x-3y+5z=1

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{1}{70}\)

Do đó: x=15/70=3/14; y=1/7; z=1/5