Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(\frac{x-10}{1994}+\frac{x-8}{1996}+\frac{x-6}{1998}+\frac{x-4}{2000}+\frac{x-2}{2002}=\frac{x-2002}{2}+\frac{x-2000}{4}+\frac{x-1998}{6}+\frac{x-1996}{8}+\frac{x-1994}{10}\)
=> \(\frac{x-10}{1994}-1+\frac{x-8}{1996}-1+\frac{x-6}{1998}-1+\frac{x-4}{2000}-1+\frac{x-2}{2002}-1=\frac{x-2002}{2}-1+\frac{x-2000}{4}-1+\frac{x-1998}{6}-1+\frac{x-1996}{8}-1+\frac{x-1994}{10}-1\)
=> \(\frac{x-2004}{1994}+\frac{x-2004}{1996}+\frac{x-2004}{1998}+\frac{x-2004}{2000}\frac{x-2004}{2002}=\frac{x-2004}{2}+\frac{x-2004}{4}+\frac{x-2004}{6}+\frac{x-2004}{8}+\frac{x-2004}{10}\)
=> \(\frac{x-2004}{1994}+\frac{x-2004}{1996}+\frac{x-2004}{1998}+\frac{x-2004}{2000}\frac{x-2004}{2002}-\frac{x-2004}{2}-\frac{x-2004}{4}-\frac{x-2004}{6}-\frac{x-2004}{8}-\frac{x-2004}{10}=0\)
=> \(\left(x-2004\right)\left(\frac{1}{1994}+\frac{1}{1996}+\frac{1}{1998}+\frac{1}{2000}+\frac{1}{2002}-\frac{1}{2}-\frac{1}{4}-\frac{1}{6}-\frac{1}{8}-\frac{1}{10}=0\right)\)
=> \(x-2004=0\)
=> \(x=2004\)
Vậy phương trình có nghiệm là x = 2004 .
b, Ta có : \(\frac{x-85}{15}+\frac{x-74}{13}+\frac{x-67}{11}+\frac{x-64}{9}=10\)
=> \(\frac{x-85}{15}-1+\frac{x-74}{13}-2+\frac{x-67}{11}-3+\frac{x-64}{9}-4=10-1-2-3-4=0\)
=> \(\frac{x-100}{15}+\frac{x-100}{13}+\frac{x-100}{11}+\frac{x-100}{9}=0\)
=> \(\left(x-100\right)\left(\frac{1}{15}+\frac{1}{13}+\frac{1}{11}+\frac{1}{9}\right)=0\)
=> \(x-100=0\)
=> \(x=100\)
Vậy phương trình có nghiệm là x = 100 .
b, Ta có : \(\frac{x-10}{1994}+\frac{x-8}{1996}+\frac{x-6}{1994}+\frac{x-4}{2000}+\frac{x-2}{2002}=\frac{x-2002}{2}+\frac{x-2000}{4}+\frac{x-1998}{6}+\frac{x-1996}{8}+\frac{x-1994}{10}\)
=> \(\frac{x-10}{1994}-1+\frac{x-8}{1996}-1+\frac{x-6}{1994}-1+\frac{x-4}{2000}-1+\frac{x-2}{2002}-1=\frac{x-2002}{2}-1+\frac{x-2000}{4}-1+\frac{x-1998}{6}-1+\frac{x-1996}{8}-1+\frac{x-1994}{10}-1\)
=> \(\frac{x-2004}{1994}+\frac{x-2004}{1996}+\frac{x-2004}{1994}+\frac{x-2004}{2000}+\frac{x-2004}{2002}=\frac{x-2004}{2}+\frac{x-2004}{4}+\frac{x-2004}{6}+\frac{x-2004}{8}+\frac{x-2004}{10}\)
=> \(\frac{x-2004}{1994}+\frac{x-2004}{1996}+\frac{x-2004}{1994}+\frac{x-2004}{2000}+\frac{x-2004}{2002}-\frac{x-2004}{2}-\frac{x-2004}{4}-\frac{x-2004}{6}-\frac{x-2004}{8}-\frac{x-2004}{10}=0\)
=> \(\left(x-2004\right)\left(\frac{1}{1994}+\frac{1}{1996}+\frac{1}{1998}+\frac{1}{2000}+\frac{1}{2002}-\frac{1}{2}-\frac{1}{4}-\frac{1}{6}-\frac{1}{8}-\frac{1}{10}\right)=0\)
=> \(x-2004=0\)
=> \(x=2004\)
Vậy phương trình có tập nghiệm là \(S=\left\{2004\right\}\)
a) Sửa đề: \(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\)
Ta có: \(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\)
\(\Leftrightarrow\frac{x+1}{35}+1+\frac{x+3}{33}+1=\frac{x+5}{31}+1+\frac{x+7}{29}+1\)
\(\Leftrightarrow\frac{x+36}{35}+\frac{x+36}{33}=\frac{x+36}{31}+\frac{x+36}{29}\)
\(\Leftrightarrow\frac{x+36}{35}+\frac{x+36}{33}-\frac{x+36}{31}-\frac{x+36}{29}=0\)
\(\Leftrightarrow\left(x+36\right)\left(\frac{1}{35}+\frac{1}{33}-\frac{1}{31}-\frac{1}{29}\right)=0\)
Vì \(\frac{1}{35}+\frac{1}{33}-\frac{1}{31}-\frac{1}{29}\ne0\)
nên x+36=0
hay x=-36
Vậy: x=-36
\( a)5\left( {x - 3} \right) - 4 = 2\left( {x - 1} \right) + 7\\ \Leftrightarrow 5x - 15 - 4 = 2x - 2 + 7\\ \Leftrightarrow 5x - 19 = 2x + 5\\ \Leftrightarrow 5x - 2x = 5 + 19\\ \Leftrightarrow 3x = 24\\ \Leftrightarrow x = 8\\ b)\dfrac{{8x - 3}}{4} - \dfrac{{3x - 2}}{2} = \dfrac{{2x - 1}}{2} + \dfrac{{x + 3}}{4}\\ \Leftrightarrow 8x - 3 - \left( {3x - 2} \right).2 = \left( {2x - 1} \right).2 + x + 3\\ \Leftrightarrow 8x - 3 - 6x + 4 = 4x - 2 + x + 3\\ \Leftrightarrow 2x + 1 = 5x + 1\\ \Leftrightarrow 2x - 5x = 0\\ \Leftrightarrow - 3x = 0\\ \Leftrightarrow x = 0 \)
\( c)\dfrac{{2\left( {x + 5} \right)}}{3} + \dfrac{{x + 12}}{2} - \dfrac{{5\left( {x - 2} \right)}}{6} = \dfrac{x}{3} + 11\\ \Leftrightarrow 4\left( {x + 5} \right) + 3\left( {x + 12} \right) - \left[ {5\left( {x - 2} \right)} \right] = 2x + 66\\ \Leftrightarrow 4x + 20 + 3x + 36 - 5x + 10 = 2x + 66\\ \Leftrightarrow 2x + 66 = 2x + 66\\ \Leftrightarrow 0x = 0\left( {VSN} \right)\\ \Leftrightarrow x = 0 \)
\(d)\dfrac{x-10}{1994}+\dfrac{x-8}{1996}+\dfrac{x-6}{1998}+\dfrac{x-4}{2000}+\dfrac{x-2}{2002}=\dfrac{x-2002}{2}+\dfrac{x-2000}{4}+\dfrac{x-1998}{6}+\dfrac{x-1996}{8}+\dfrac{x-1994}{10}\\ \Leftrightarrow \dfrac{x-10}{1994}-1+\dfrac{x-8}{1996}-1+\dfrac{x-6}{1998}-1+\dfrac{x-4}{2000}-1+\dfrac{x-2}{2002}-1=\dfrac{x-2002}{2}-1+\dfrac{x-2000}{4}-1+\dfrac{x-1998}{6}-1+\dfrac{x-1996}{8}-1+\dfrac{x-1994}{10}-1\\ \Leftrightarrow \dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}+\dfrac{x-2004}{2000}\dfrac{x-2004}{2002}=\dfrac{x-2004}{2}+\dfrac{x-2004}{4}+\dfrac{x-2004}{6}+\dfrac{x-2004}{8}+\dfrac{x-2004}{10}\\ \Leftrightarrow \dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}+\dfrac{x-2004}{2000}\dfrac{x-2004}{2002}-\dfrac{x-2004}{2}-\dfrac{x-2004}{4}-\dfrac{x-2004}{6}-\dfrac{x-2004}{8}-\dfrac{x-2004}{10}=0\\ \Leftrightarrow \left(x-2004\right)\left(\dfrac{1}{1994}+\dfrac{1}{1996}+\dfrac{1}{1998}+\dfrac{1}{2000}+\dfrac{1}{2002}-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{6}-\dfrac{1}{8}-\dfrac{1}{10}=0\right)\\ \Leftrightarrow x-2004=0\\ \Leftrightarrow x=2004\)
a, \(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\)
\(\frac{x+36}{35}+\frac{x+36}{33}-\frac{x+36}{31}-\frac{x+36}{29}=0\)
\(\left(x+36\right)\left(\frac{1}{35}+\frac{1}{33}-\frac{1}{31}-\frac{1}{29}\right)=0\)
\(=>x+36=0\)
\(=>x=36\)
\(\frac{x}{2000}+\frac{x+2}{2002}+\frac{x+4}{2004}+....+\frac{x+12}{2012}=7\)
\(\Leftrightarrow\left(\frac{x}{2000}-1\right)+\left(\frac{x+2}{2002}-1\right)+\left(\frac{x+4}{2004}-1\right)+......+\left(\frac{x+12}{2012}-1\right)=0\)
\(\Leftrightarrow\frac{x-2000}{2000}+\frac{x-2000}{2002}+\frac{x-2000}{2004}+.....+\frac{x-2000}{2012}=0\)
\(\Leftrightarrow\left(x-2000\right)\left(\frac{1}{2000}+\frac{1}{2002}+\frac{1}{2004}+....+\frac{1}{2012}\right)=0\)
Dễ thấy \(\frac{1}{2000}+\frac{1}{2002}+....+\frac{1}{2012}>0\Rightarrow x-2000=0\Rightarrow x=2000\)
\(\frac{x+1}{15}+\frac{x+2}{7}+\frac{x+4}{4}+6=0\)
\(\Leftrightarrow\left(\frac{x+1}{15}+1\right)+\left(\frac{x+2}{7}+2\right)+\left(\frac{x+4}{4}+3\right)=0\)
\(\Leftrightarrow\frac{x+16}{15}+\frac{x+16}{7}+\frac{x+16}{4}=0\)
\(\Leftrightarrow\left(x+16\right)\left(\frac{1}{15}+\frac{1}{7}+\frac{1}{4}\right)=0\)
Dễ thấy \(\frac{1}{4}+\frac{1}{7}+\frac{1}{15}>0\Rightarrow x+16=0\Rightarrow x=-16\)
a: \(\Rightarrow\left(\dfrac{x+1}{35}+1\right)+\left(\dfrac{x+3}{33}+1\right)=\left(\dfrac{x+5}{31}+1\right)+\left(\dfrac{x+7}{29}+1\right)\)
=>x+36=0
=>x=-36
b: \(\Leftrightarrow\left(\dfrac{x-10}{1994}-1\right)+\left(\dfrac{x-8}{1996}-1\right)+\left(\dfrac{x-6}{1998}-1\right)+\left(\dfrac{x-4}{2000}-1\right)+\left(\dfrac{x-2}{2002}-1\right)=\left(\dfrac{x-2002}{2}-1\right)+\left(\dfrac{x-2000}{4}-1\right)+\left(\dfrac{x-1998}{6}-1\right)+\left(\dfrac{x-1996}{8}-1\right)+\left(\dfrac{x-1994}{10}-1\right)\)
=>x-2004=0
=>x=2004
\(\frac{x-4}{2000}+\frac{x-3}{2001}+\frac{x-2}{2002}=\frac{x-2002}{2}+\frac{x-2001}{3}+\frac{x-2000}{4}\)
<=> \(\left(\frac{x-4}{2000}-1\right)+\left(\frac{x-3}{2001}-1\right)+\left(\frac{x-2}{2002}-1\right)=\left(\frac{x-2002}{2}-1\right)+\left(\frac{x-2001}{3}-1\right)+\left(\frac{x-2000}{4}-1\right)\)
<=> \(\frac{x-2004}{2000}+\frac{x-2004}{2001}+\frac{x-2004}{2002}=\frac{x-2004}{2}+\frac{x-2004}{3}+\frac{x-2004}{4}\)
<=> (x - 2004)(1/2000 + 1/2001 + 1/2002 - 1/2 - 1/3 - 1/4) = 0
<=> x - 2004 = 0 (vì 1/2000 + 1/2001 + 1/2002 - 1/2 - 1/3 - 1/4 khác 0)
<=> x = 2004
Vậy S = {2004}
đề bài \(=\frac{x-2002}{2}+\frac{x-2001}{3}+\frac{x-2000}{4}\)
\(\Leftrightarrow\frac{x}{2000}-\frac{4}{2000}+\frac{x}{2001}-\frac{3}{2001}+\frac{x}{2002}-\frac{2}{2002}=\frac{x}{2}-\frac{2002}{2}+\frac{x}{3}-\frac{2001\\}{3}+\frac{x}{4}-\frac{2000}{4}\)
\(\Leftrightarrow\frac{x}{2000}-\frac{1}{500}+\frac{x}{2001}-\frac{1}{667}+\frac{x}{2002}-\frac{1}{1001}-\frac{x}{2}-\frac{x}{3}-\frac{x}{4}+1001+667+500=0\)
\(\Leftrightarrow\left(\frac{x}{2000}+\frac{x}{2001}+\frac{x}{2002}-\frac{x}{2}-\frac{x}{3}-\frac{x}{4}\right)+\left(1001+667+500-\frac{1}{500}-\frac{1}{667}-\frac{1}{1001}\right)=0\)
=> x=1
Sửa để\(\frac{x-10}{1994}+\frac{x-8}{1996}+\frac{x-6}{1998}+\frac{x-4}{2000}+\frac{x-2}{2002}=5\)
\(\Leftrightarrow\frac{x-10}{1994}-1+\frac{x-8}{1996}-1+\frac{x-6}{1998}-1+\frac{x-4}{2000}-1+\frac{x-2}{2002}-1=0\)
\(\Leftrightarrow\frac{x-2004}{1994}+\frac{x-2004}{1996}+\frac{x-2004}{1998}+\frac{x-2004}{2000}+\frac{x-2004}{2002}=0\)
\(\Leftrightarrow\left(x-2004\right)\left(\frac{1}{1994}+\frac{1}{1996}+...+\frac{1}{2002}\right)=0\)
|_____________A__________________|
Vì A > 0 nên x - 2004 = 0
=> x = 2004
Vậy ..........
đề đúng mà cậu ==