\(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\))\(\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2019

Có bị sai đề không vậy bạn ? Mình nghĩ nó là \(\sqrt{x}+3\) với \(\sqrt{x}-3\)chứ không phải là \(\sqrt{x+3}\) với \(\sqrt{x-3}\)?

13 tháng 9 2020

Bài 1.

\(B=\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\div\frac{x}{x-\sqrt{x}}\)với \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

a) \(B=\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{x}{x-\sqrt{x}}\)

\(B=\left(\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{x}{x-\sqrt{x}}\)

\(B=\left(\frac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{x}{x-\sqrt{x}}\)

\(B=\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\div\frac{x}{x-\sqrt{x}}\)

\(B=\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{x}\)

\(B=\frac{4\sqrt{x}\cdot\sqrt{x}}{\left(\sqrt{x}+1\right)x}=\frac{4x}{\left(\sqrt{x}+1\right)x}=\frac{4}{\sqrt{x}+1}\)

b) Để B > 1

=> \(\frac{4}{\sqrt{x}+1}>0\)( với \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\))

Vì 4 > 0

=> \(\sqrt{x}+1>0\)

<=> \(\sqrt{x}>-1\)( luôn luôn đúng \(\forall\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)) ( theo ĐKXĐ )

Vậy \(\forall\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)thì B > 1

Chưa chắc lắm ... Còn câu 2 thì tí nữa mình làm cho 

13 tháng 9 2020

Bài 2.

\(A=2\sqrt{5}-1\)

\(B=\frac{2}{x-1}\cdot\sqrt{\frac{x^2-2x+1}{4x^2}}\)( x > 0 )

a) \(B=\frac{2}{x-1}\cdot\frac{\sqrt{x^2-2x+1}}{\sqrt{4x^2}}\)

\(B=\frac{2}{x-1}\cdot\frac{\sqrt{\left(x-1\right)^2}}{\sqrt{\left(2x\right)^2}}\)

\(B=\frac{2}{x-1}\cdot\frac{\left|x-1\right|}{\left|2x\right|}\)

\(B=\frac{2}{x-1}\cdot\frac{x-1}{2x}=\frac{1}{x}\)( vì x > 0 )

b) Để A + B = 0

=> \(\left(2\sqrt{5}-1\right)+\frac{1}{x}=0\)( ĐKXĐ : \(x\ne0\))

<=> \(\frac{1}{x}=-\left(2\sqrt{5}-1\right)\)

<=> \(\frac{1}{x}=1-2\sqrt{5}\)

<=> \(x\times\left(1-2\sqrt{5}\right)=1\)

<=> \(x=\frac{1}{1-2\sqrt{5}}\)( tmđk )

Vậy \(x=\frac{1}{1-2\sqrt{5}}\)