Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right).\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)
\(=\frac{3\sqrt{x}-x+x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)
\(=\frac{3\left(\sqrt{x}+3\right)}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}.\frac{-\sqrt{x}\left(3-\sqrt{x}\right)}{2\left(\sqrt{x}+2\right)}\)
\(=\frac{-3\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)
ĐKXĐ: ...
\(P=\left(\frac{x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right).\frac{\sqrt{x}-3}{\sqrt{x}}\)
\(P=\left(\frac{x+\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right).\frac{\left(\sqrt{x}-3\right)}{\sqrt{x}}=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}+3}\)
\(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}=\sqrt{\left(5+\sqrt{2}\right)^2}-\sqrt{\left(4+\sqrt{2}\right)^2}\)
\(x=5+\sqrt{2}-4-\sqrt{2}=1\)
\(\Rightarrow P=\frac{1+1}{1+3}=\frac{1}{2}\)
\(P=\frac{\sqrt{x}+1}{\sqrt{x}+3}=1-\frac{2}{\sqrt{x}+3}\)
Do \(\sqrt{x}>0\Rightarrow\sqrt{x}+3>3\Rightarrow\frac{2}{\sqrt{x}+3}< \frac{2}{3}\)
\(\Rightarrow P>1-\frac{2}{3}=\frac{1}{3}\) (đpcm)
\(P=\left(\frac{x+3}{x-9}+\frac{1}{\sqrt{x}+3}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)
ĐKXĐ:\(x\ge0;x\ne9\)
\(=\left(\frac{x+3}{x-9}+\frac{1\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x+3}\right)}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(=\left(\frac{x+3+\sqrt{x}-3}{x-9}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(=\frac{x+\sqrt{x}}{x-9}.\frac{\sqrt{x-3}}{\sqrt{x}}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b)
\(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
\(=\sqrt{5^2+2.5\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{4^2+2.4\sqrt{2}+\left(\sqrt{2}\right)^2}\)
\(=\sqrt{\left(5+\sqrt{2}\right)^2}-\sqrt{\left(4+\sqrt{2}\right)^2}\)
\(=5+\sqrt{2}-4-\sqrt{2}\)
\(=1\)
Thay x=1 vào P ta có:
\(P=\frac{\sqrt{1}+1}{\sqrt{1}-3}\)
\(=\frac{2}{-2}=-1\)
Có bị sai đề không vậy bạn ? Mình nghĩ nó là \(\sqrt{x}+3\) với \(\sqrt{x}-3\)chứ không phải là \(\sqrt{x+3}\) với \(\sqrt{x-3}\)?