\(\frac{sin2x}{2cos^2x-2sin\frac{\pi}{4}}=tan6x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 9 2019

Mẫu số là \(2sin\frac{\pi}{4}\) hay \(2sin^2\frac{\pi}{4}\) bạn?

\(2sin\frac{\pi}{4}\) thì đây ko phải là pt lượng giác cơ bản nên mình nghĩ là ko giải được ở cấp phổ thông

26 tháng 9 2019

\(2sin^2\frac{\pi}{4}\)

NV
24 tháng 7 2020

d/

\(\Leftrightarrow1-cos2x+\sqrt{3}sin2x+4=4\left(\sqrt{3}sinx+cosx\right)\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x+\frac{5}{2}=4\left(\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\right)\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)+\frac{5}{2}=4sin\left(x+\frac{\pi}{6}\right)\)

\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)+\frac{5}{2}=4sin\left(x+\frac{\pi}{6}\right)\)

\(\Leftrightarrow1-2sin^2\left(x+\frac{\pi}{6}\right)+\frac{5}{2}=4sin\left(x+\frac{\pi}{6}\right)\)

\(\Leftrightarrow2sin^2\left(x+\frac{\pi}{6}\right)+4sin\left(x+\frac{\pi}{6}\right)-\frac{7}{2}=0\)

\(\Rightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{6}\right)=\frac{-2+\sqrt{11}}{2}\\sin\left(x+\frac{\pi}{6}\right)=\frac{-2-\sqrt{11}}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+arcsin\left(\frac{-2+\sqrt{11}}{2}\right)+k2\pi\\x=\frac{5\pi}{6}-arcsin\left(\frac{-2+\sqrt{11}}{2}\right)+k2\pi\end{matrix}\right.\)

NV
24 tháng 7 2020

c/

\(\Leftrightarrow1-cos2x+\sqrt{3}sin2x+2\sqrt{3}sinx+2cosx=2\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x+2\left(\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\right)=\frac{1}{2}\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)=\frac{1}{2}\)

\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)

\(\Leftrightarrow cos2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)

\(\Leftrightarrow1-2sin^2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)

\(\Leftrightarrow-2sin^2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)+\frac{1}{2}=0\)

\(\Rightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{6}\right)=\frac{1+\sqrt{2}}{2}\left(l\right)\\sin\left(x+\frac{\pi}{6}\right)=\frac{1-\sqrt{2}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=arcsin\left(\frac{1-\sqrt{2}}{2}\right)+k2\pi\\x+\frac{\pi}{6}=\pi-arcsin\left(\frac{1-\sqrt{2}}{2}\right)+k2\pi\end{matrix}\right.\)

\(\Rightarrow x=...\)

NV
27 tháng 9 2020

\(\sqrt{3}sin2x-\left(1+cos2x\right)=m\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x=\frac{m+1}{2}\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)=\frac{m+1}{2}\)

Do \(x\in\left[\frac{\pi}{4};\frac{5\pi}{12}\right]\Rightarrow2x-\frac{\pi}{6}\in\left[\frac{\pi}{3};\frac{2\pi}{3}\right]\)

\(\Rightarrow sin\left(2x-\frac{\pi}{6}\right)\in\left[\frac{\sqrt{3}}{2};1\right]\)

Pt có nghiệm thuộc đoạn đã cho khi và chỉ khi: \(\frac{\sqrt{3}}{2}\le\frac{m+1}{2}\le1\)

\(\Leftrightarrow\sqrt{3}-1\le m\le1\)

NV
20 tháng 8 2020

c/

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=1+cos\left(\frac{\pi}{2}-2x\right)\)

\(\Leftrightarrow1-3sin^2x.cos^2x=1+sin2x\)

\(\Leftrightarrow-\frac{3}{4}sin^22x=sin2x\)

\(\Leftrightarrow3sin^22x+4sin2x=0\)

\(\Leftrightarrow sin2x\left(3sin2x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\sin2x=-\frac{4}{3}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=\frac{k\pi}{2}\)

NV
20 tháng 8 2020

a/

\(\Leftrightarrow cos2x=sin3x\)

\(\Leftrightarrow cos2x=cos\left(\frac{\pi}{2}-3x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}-3x+k2\pi\\2x=3x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{10}+\frac{k2\pi}{5}\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

b/

\(\Leftrightarrow\left(sinx-1\right)\left(2sinx+1\right)\left(sin^2x-2sinx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=-\frac{1}{2}\\sinx=1-\sqrt{2}\end{matrix}\right.\) \(\Leftrightarrow x=...\)

NV
10 tháng 7 2020

a/

\(\Leftrightarrow sin2x\left(1+\sqrt{2}sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\1+\sqrt{2}sinx=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\sinx=-\frac{\sqrt{2}}{2}=sin\left(-\frac{\pi}{4}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\x=-\frac{\pi}{4}+k2\pi\\x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=-\frac{\pi}{4}+k2\pi\\x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

b/

\(\Leftrightarrow2sin2x.cos2x-\frac{1}{2}sin4x+\frac{1}{2}sinx=0\)

\(\Leftrightarrow sin4x-\frac{1}{2}sin4x+\frac{1}{2}sinx=0\)

\(\Leftrightarrow sin4x=-sinx=sin\left(-x\right)\)

\(\Rightarrow\left[{}\begin{matrix}4x=-x+k2\pi\\4x=\pi+x+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{k2\pi}{5}\\x=\frac{\pi}{3}+\frac{k2\pi}{3}\end{matrix}\right.\)

NV
10 tháng 7 2020

e/

\(sin\left(\frac{3\pi}{2}-sinx\right)=1\)

\(\Leftrightarrow\frac{3\pi}{2}-sinx=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow sinx=\pi+k2\pi\)

\(-1\le sinx\le1\Rightarrow-1\le\pi+k2\pi\le1\)

\(\Rightarrow\) Không tồn tại k nguyên thỏa mãn

Pt đã cho vô nghiệm

f/

\(cos^2x-sin^2x+sin4x=0\)

\(\Leftrightarrow cos2x+2sin2x.cos2x=0\)

\(\Leftrightarrow cos2x\left(1+2sin2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin2x=-\frac{1}{2}=sin\left(-\frac{\pi}{6}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\2x=-\frac{\pi}{6}+k2\pi\\2x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=-\frac{\pi}{12}+k\pi\\x=\frac{7\pi}{12}+k\pi\end{matrix}\right.\)

NV
16 tháng 9 2020

d.

\(-1\le sin2x\le1\Rightarrow2\le y\le1+\sqrt{3}\)

\(y_{min}=2\) khi \(sin2x=-1\)

\(y_{max}=1+\sqrt{3}\) khi \(sin2x=1\)

e.

\(0\le sin^2x\le1\Rightarrow\frac{4}{3}\le y\le2\)

\(y_{min}=\frac{4}{3}\) khi \(sin^2x=1\)

\(y_{max}=2\) khi \(sinx=0\)

NV
16 tháng 9 2020

a.

\(0\le cos^2x\le1\Rightarrow2\le y\le1+\sqrt{3}\)

\(y_{min}=2\) khi \(cosx=0\)

\(y_{max}=1+\sqrt{3}\) khi \(cos^2x=1\)

b.

\(-1\le sin\left(2x-\frac{\pi}{4}\right)\le1\Rightarrow-2\le y\le4\)

\(y_{min}=-2\) khi \(sin\left(2x-\frac{\pi}{4}\right)=-1\)

\(y_{max}=4\) khi \(sin\left(2x-\frac{\pi}{4}\right)=1\)

c.

\(0\le cos^23x\le1\Rightarrow1\le y\le3\)

\(y_{min}=1\) khi \(cos^23x=1\)

\(y_{max}=3\) khi \(cos3x=0\)