\(\frac{\left(x^3+y^3+z^3+3xyz\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z^2\right)}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2015

Biến đổi VT 

x^3 + y^3 + z^3 - 3xyz = ( x+  y)^3 - 3xy ( x+ y) + z^3 - 3xyz

                                  = ( x+  y + z)^3 - 3(x+y)z(x+y+z) - 3xy ( x + y +z )

                                   = ( x+ y+ z) [ ( x + y+ z)^2 - 3(x+y)z - 3xy)

                                     = ( x+ y +z ) . ( x^2 + y^2 + z^2 + 2xy + 2yz + 2xz - 3xy - 3yz - 3 xz )

                                  = ( x+ y +z )(x^2 + y^2 + z^2 - xy -yz - xz )

                                 = 1/2 ( x+ y +z) ( 2x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2 xz)

Đưa cái ngoạc cuối về dạng bình phương là xong 

20 tháng 12 2016

nghe có mùi hương của lớp 8

21 tháng 12 2016

Câu này khá dễ .Có thể biến đổi \(x^3+y^3+z^3\) thành hằng đẳng thức rồi trừ gọn đi rồi đặt nhân tử chung để biến đổi như vế phải

28 tháng 12 2016

hay ak m hjhj

28 tháng 12 2016

rất cần có những bài như thế này để mn tham khảo, cám ơn bn