Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biến đổi VT
x^3 + y^3 + z^3 - 3xyz = ( x+ y)^3 - 3xy ( x+ y) + z^3 - 3xyz
= ( x+ y + z)^3 - 3(x+y)z(x+y+z) - 3xy ( x + y +z )
= ( x+ y+ z) [ ( x + y+ z)^2 - 3(x+y)z - 3xy)
= ( x+ y +z ) . ( x^2 + y^2 + z^2 + 2xy + 2yz + 2xz - 3xy - 3yz - 3 xz )
= ( x+ y +z )(x^2 + y^2 + z^2 - xy -yz - xz )
= 1/2 ( x+ y +z) ( 2x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2 xz)
Đưa cái ngoạc cuối về dạng bình phương là xong
Ta có x3 - y3 + z3 + 3xyz
= (x - y)3 + 3xy(x - y) + z3 + 3xyz
= [(x - y)3 + z3] + [3xy(x - y) + 3xyz]
= (x - y + z)[(x - y)2 - (x - y)z + z2] + 3xy(x - y + z)
= (x - y + z)[x2 - 2xy + y2 - xz + yz + z2] + 3xy(x - y + z)
= (x - y + z)(x2 + y2 + z2 + xy - xz + yz)
= 2(x2 + y2 + z2 + xy - xz + yz) (vì x - y+ z = 2)
Lại có (x + y)2 + (y + z)2 + (z - x)2
= x2 + 2xy + y2 + y2 + 2yz + z2 + z2 - 2xz + z2
= 2x2 + 2y2 + 2z2 + 2xy + 2yz - 2xz
= 2(x2 + y2 + z2 + xy - xz + yz)
Khi đó P = \(\frac{2\left(x^2+y^2+z^2+xy-xz+yz\right)}{2\left(x^2+y^2+z^2+xy-xz+yz\right)}=1\)
nghe có mùi hương của lớp 8
Câu này khá dễ .Có thể biến đổi \(x^3+y^3+z^3\) thành hằng đẳng thức rồi trừ gọn đi rồi đặt nhân tử chung để biến đổi như vế phải