K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a,\left[\left(-\frac{1}{2}\right)^3-\left(\frac{3}{4}\right)^3.\left(-2\right)^2\right]:\left[2.\left(-1\right)^5+\left(\frac{3}{4}\right)^2-\frac{3}{8}\right]\)

\(=\left[\left(-\frac{1}{8}\right)-\frac{27}{64}.4\right]:\left[2.\left(-1\right)+\frac{9}{16}-\frac{3}{8}\right]\)

\(=\left[\left(-\frac{1}{8}-\frac{27}{16}\right)\right]:\left[-2+\frac{9}{16}-\frac{3}{8}\right]\)

\(=\frac{-2-27}{16}:\frac{-32+9-6}{16}\)

\(=-\frac{29}{16}:\frac{-29}{16}=1\)

\(b,\left[\left(\frac{4}{3}\right)^{-2}\left(\frac{3}{2}\right)^4\right]:\left(\frac{3}{2}\right)^6\)

\(=\left(\frac{9}{16}.\frac{81}{16}\right):\frac{729}{64}\)

\(=\frac{729}{64}:\frac{729}{64}=1\)

29 tháng 11 2016

a)\(\left(-3\right)^{x+3}=-\frac{1}{27}\)

\(\left(-3\right)^{x+3}=\left(-\frac{1}{3}\right)^3\)

\(\left(-3\right)^{x+3}=\left(-\frac{3^0}{3^1}\right)^3\)

\(\left(-3\right)^{x+3}=\left(-3^{-1}\right)^3\)

\(\left(-3\right)^{x+3}=\left(-3\right)^{-3}\)

\(\Rightarrow x+3=-3\)

\(\Rightarrow x=-6\)

b)\(\left(-6\right)^{2x+2}=\frac{1}{36}\)

\(\left(-6\right)^{2x+2}=\left(-\frac{1}{6}\right)^2\)

\(\left(-6\right)^{2x+2}=\left(-\frac{6^0}{6^1}\right)^2\)

\(\left(-6\right)^{2x+2}=\left(-6^{-1}\right)^2\)

\(\left(-6\right)^{2x+2}=\left(-6\right)^{-2}\)

\(\Rightarrow2x+2=-2\)

\(\Rightarrow2x=-4\)

\(\Rightarrow x=-2\)

c)\(\left(-3\right)^{x+5}=\frac{1}{81}\)

\(\left(-3\right)^{x+5}=\left(-\frac{1}{3}\right)^4\)

\(\left(-3\right)^{x+5}=\left(-\frac{3^0}{3^1}\right)^4\)

\(\left(-3\right)^{x+5}=\left(-3^{-1}\right)^4\)

\(\left(-3\right)^{x+5}=\left(-3\right)^{-4}\)

\(\Rightarrow x+5=-4\)

\(\Rightarrow x=-9\)

29 tháng 11 2016

d)\(\left(\frac{1}{9}\right)^x=\left(\frac{1}{27}\right)^6\)

\(\left[\left(\frac{1}{3}\right)^2\right]^x=\left[\left(\frac{1}{3}\right)^3\right]^6\)

\(\left(\frac{1}{3}\right)^{2x}=\left(\frac{1}{3}\right)^{18}\)

\(\Rightarrow2x=18\)

\(\Rightarrow x=9\)

e)\(\left(\frac{4}{9}\right)^x=\left(\frac{8}{27}\right)^6\)

\(\left[\left(\frac{2}{3}\right)^2\right]^x=\left[\left(\frac{2}{3}\right)^3\right]^6\)

\(\left(\frac{2}{3}\right)^{2x}=\left(\frac{2}{3}\right)^{18}\)

\(\Rightarrow2x=18\)

\(\Rightarrow x=9\)

f) \(\frac{3^3.\left(0,5\right)^5}{\left(1,5\right)^4}=\frac{3^3.\left(0,5\right)^5}{\left[3.\left(0,5\right)\right]^4}=\frac{3^3.\left(0,5\right)^5}{3^4.\left(0,5\right)^4}=\frac{0,5}{3}=\frac{1}{6}\)

b) \(\frac{2^3+3.2^6-4^3}{2^3+3^2}=\frac{2^3.\left(1+3.2^3-2^3\right)}{2^3+3^2}=\frac{2^3.17}{17}=2^3=8\)

Các phần còn lại tương tự, bạn tự làm nhé !

(*) Lưu ý ở những bài rút gọn có chứa lũy thừa thì bạn đưa số đó về số nguyên tố rồi thực hiện như bình thường .

VD : \(4^3=\left(2^2\right)^3=2^6\) ( đưa về số nguyên tố là 2 )

\(6^3=\left(2.3\right)^3=2^3.3^3\) ( đưa về tích hai số nguyên tố )

\(a,\frac{2^3.2^4}{2^5}=\frac{2^7}{2^5}=2^2=4\)

\(b,\frac{\left(0,2\right)^5.\left(0,6\right)^4}{\left(0,2\right)^7.\left(0,3\right)^4}=\frac{\left(0,2\right)^5.\left(0,3\right)^4.2^4}{\left(0,2\right)^7.\left(0,3\right)^4}=\frac{2^4}{\left(0,2\right)^2}\)

\(c,\frac{3^3.12^4}{6^5.9^4}=\frac{3^3.6^4.2^4}{6^5.3^8}=\frac{2^4}{6.3^5}=\frac{2^4}{2.3.3^5}=\frac{2^3}{3^6}\)

\(d,\frac{2^3+2^4+2^5}{7^2}=\frac{8+16+32}{49}=\frac{56}{49}=\frac{8}{7}\)

\(e,\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.3^8}{2^6.3^6.2^9}=\frac{2^{15}.3^8}{2^{15}.3^6}=3^2=9\)

31 tháng 5 2015

\(A=\frac{11\cdot3^{22}\cdot3^7-9^{15}}{\left(2\cdot3^{14}\right)^2}=6\)

\(B=\frac{\left(3\cdot4\cdot2^{16}\right)^2}{11\cdot2^{13}\cdot4^{11}-16^9}=2\)

\(C=\frac{4^5\cdot9^{4-2\cdot6^9}}{2^{10}\cdot3^8+6^8\cdot20}=0\)

 

15 tháng 8 2016

A=\(\frac{11\cdot3^{22}\cdot3^7-9^{15}}{\left(2\cdot3^{14}\right)^2}=6\)

a) Ta có: \(\left(-2\right)^3+\frac{1}{2}:\frac{1}{8}-\sqrt{25}+\left|-64\right|\)

\(=-8+\frac{1}{2}\cdot8-5+64\)

\(=-8+4-5+64=55\)

b) Ta có: \(\left(\frac{-3}{4}+\frac{2}{7}\right):\frac{2}{3}+\left(\frac{-1}{4}+\frac{5}{7}\right):\frac{2}{3}\)

\(=\left(\frac{-3}{4}+\frac{2}{7}\right)\cdot\frac{3}{2}+\left(\frac{-1}{4}+\frac{5}{7}\right)\cdot\frac{3}{2}\)

\(=\left(\frac{-3}{4}+\frac{2}{7}+\frac{-1}{4}+\frac{5}{7}\right)\cdot\frac{3}{2}\)

\(=0\cdot\frac{3}{2}=0\)

c) Ta có: \(\frac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)

\(=\frac{2^{10}\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+2^8\cdot3^8\cdot20}=\frac{2\left(2^9\cdot9^4-6^9\right)}{6^8\left(2^2+20\right)}=\frac{-1}{3}\)

19 tháng 3 2020

a) ( -2 )3 + \(\frac{1}{2}:\frac{1}{8}\) - √25 + \(|-64|\)

= \(\frac{-8}{1}\) + \(\frac{1}{2}.\frac{8}{1}\) - \(\frac{5}{1}\) + \(\frac{64}{1}\)

= \(\frac{-16}{2}+\frac{1}{2}.\frac{8}{1}-\frac{10}{2}+\frac{128}{2}\)

= \(\frac{-16}{2}+\frac{8}{2}-\frac{10}{2}+\frac{128}{2}\)

= \(\frac{-16+8-10+128}{2}\) = \(\frac{110}{2}\) = 55