Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=4+4^2+4^3+...+4^{200}\)
\(4A=4^2+4^3+...+4^{201}\)
\(4A-A=3A=4^{201}-4\)
\(A=\frac{4^{201}-4}{3}\)
b) \(B=1+5+5^2+...+5^{2017}\)
\(5B=5+5^2+5^3+...+5^{2018}\)
\(5B-B=4B=5^{2018}-1\)
\(B=\frac{5^{2018}-1}{4}\)
c) \(C=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{500}}\)
\(3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{499}}\)
\(3C-C=2C=1-\frac{1}{3^{500}}=\frac{3^{500}-1}{3^{500}}\)
\(C=\frac{\left(\frac{3^{500}-1}{3^{500}}\right)}{2}\)
T_i_c_k cho mình nha,có j ko hiểu cứ hỏi mình nhé ^^
Câu 1 : \(\frac{x}{2}=\frac{2y}{5}=\frac{4z}{7}\)\(\Rightarrow\)\(\frac{1}{4}.\frac{x}{2}=\frac{1}{4}.\frac{2y}{5}=\frac{1}{4}.\frac{4z}{7}\)\(\Leftrightarrow\)\(\frac{x}{8}=\frac{y}{10}=\frac{z}{7}\) \(\Rightarrow\)\(\frac{3x}{24}=\frac{5y}{50}=\frac{7z}{49}=\frac{3x+5y+7z}{24+50+49}=\frac{123}{123}=1\)
\(\frac{3x}{24}=1\Rightarrow3x=24\Rightarrow x=8\)
\(\frac{5y}{50}=1\Rightarrow5y=50\Rightarrow y=10\)
\(\frac{7z}{49}=1\Rightarrow7z=49\Rightarrow z=7\)
Vậy x,y,z lần lượt là 8,10,7
áp dụng dãy tỉ số = nhau ta có
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a-b}{c-d}=\frac{a+b}{c-d}\)
Ta xét
Vế 1 \(\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\frac{ab}{cd}\)( nhân cả tử mẫu lại với nhau )
Vế 2 : \(\frac{a-b}{c-d}=\frac{a+b}{c+d}\Rightarrow\frac{\left(a-b\right)\left(a+b\right)}{\left(c-d\right)\left(c+d\right)}=\frac{a^2-b^2}{c^2-d^2}\) ( nhân cả tử cả mẫu với nhau )
Mà Vế 1 = vế 2
=> \(\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\left(đpcm\right)\)
vì a,b,c tỉ lệ nghịch với 1/2;1/5;1/7 nên a/2=b/5=c/7. Hay a/2=b/5=2c/14
ADTCCDTSBN TA CÓ
a/2=b/5=2c/14=a+b-2c/2+5-14=70/-7=-10
Suy ra a/2=-10 nên a=-20
b/5=-10 nên b=-50
2c/14=-10 nên c=-70
Biết 3 số a,b,c chúng tỉ lệ nghịch với 1/2 ; 1/5 ; 1/7
=> a/2 = b/5 = c/7
=> a/2 = b/5 = -2c/-14
Áp dụng tc dãy tỉ số = nhau ta đc :
a/2 = b/5 = -2c/-14 = (a+b-2c)/(2+5-14) = 70/-7 = -10
=>a= -20 ; b= -50 ; c = -70
=> a+b-c = 0
1/h=1/2(1/a+1/b)=1/2a+1/2b=(a+b)/2ab
=>(a+b/)2ab-1/h=0
quy dong len ta co
(a+b)h/2abh-2ab/2abh=0=> (ah+bh-2ab)/2abh=0 =>ah+bh-2ab=0
=>ah+bh-ab-ab=0
=>a(h-b)-b(a-h)=0
=>a(h-b)=b(a-h)
=>a/b=(a-h)(h-b)
Ta có :\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\)
=> a=2k , b=3k , c=4k
=> \(a^2-b^2+c^2=108\) => 2k^2 - 3k^2 + 2.4k^2 = 108
=> 2^2 . k^2 - 3^2 .k^2 + 2.4^2 . k^2 = 108
=> 4.k^2 - 9 . k^2 + 32 . k^2 = 108
=> k^2 . (4-9+32) = 108
=> k^2 . (-27) = 108
=> k^ 2 = 108 / 27 = 4
=> k = + - 2
Vậy : ... có k tự làm
C2 :
a , b , c cùng dấu
=> \(\frac{a^2}{4}=\frac{b^2}{9}=\frac{c^2}{16}\) =>\(\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}\)(1)
Từ (1) a/d TCDTSBN , ta có :
=> \(\frac{a^2-b^2+2.c^2}{4-9+32}=\frac{108}{-27}=-4\)
vậy có k tự làm
k mình nha
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Leftrightarrow\left(\frac{a}{2}\right)^2=\left(\frac{b}{3}\right)^2=\left(\frac{c}{4}\right)^2\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
\(\Rightarrow\hept{\begin{cases}a=\sqrt{4.4}\\b=\sqrt{4.9}\\c=\sqrt{4.16}\end{cases}}\Rightarrow\hept{\begin{cases}a=4\\b=6\\c=8\end{cases}}\)