Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Do đó :
\(\frac{2b+c-a}{a}=2\)\(\Rightarrow\)\(c=3a-2b\)\(;\)\(2b=3a-c\)\(\left(1\right)\)
\(\frac{2c-b+a}{b}=2\)\(\Rightarrow\)\(a=3b-2c\)\(;\)\(2c=3b-a\)\(\left(2\right)\)
\(\frac{2a+b-c}{c}=2\)\(\Rightarrow\)\(b=3c-2a\)\(;\)\(2a=3c-b\)\(\left(3\right)\)
Thay (1), (2) và (3) vào \(P=\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\) ta được :
\(P=\frac{c.a.b}{2b.2c.2a}=\frac{abc}{8abc}=\frac{1}{8}\)
Vậy \(P=\frac{1}{8}\)
Chúc bạn học tốt ~
Phùng Minh Quân sai nha nếu a+b+c = 0 thì a+b+c / 2(a+b+c) thì nó không bằng 1/2 đc mà nó bằng 0
Có: \(\frac{3a+b+2c}{2a+c}=\frac{a+3b+c}{2b}=\frac{a+2b+2c}{b+c}\)
\(\Rightarrow\frac{a+b+c+2a+c}{2a+c}=\frac{a+b+c+2b}{2b}=\frac{a+b+c+b+c}{b+c}\)
\(\Rightarrow\frac{a+b+c}{2a+c}+1=\frac{a+b+c}{2b}+1=\frac{a+b+c}{b+c}+1\)
\(\Rightarrow\frac{a+b+c}{2a+c}=\frac{a+b+c}{2b}=\frac{a+b+c}{b+c}\)
\(\Rightarrow2a+c=2b=b+c\)
\(\Rightarrow\hept{\begin{cases}c=b\\a=\frac{1}{2}b\end{cases}}\)
Thay vào biểu thức trên , ta được:
\(P=\)\(\frac{\left(\frac{1}{2}b+b\right)\left(b+b\right)\left(b+\frac{1}{2}b\right)}{\frac{1}{2}b.b.b}=9\)
Vậy \(P=9\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{\left(2b+c-a\right)+\left(2c-b+a\right)+\left(2a+b-c\right)}{a+b+c}\)\(=\frac{2a+2c+2a}{a+b+c}=2\)
vậy : \(\frac{2b+c-a}{a}=2\Rightarrow2b+c-a=2a\Rightarrow2b+c-3a=0\Rightarrow3a-2c=c\Rightarrow3a-c=2b\)
\(\frac{2c-b+a}{b}=2\Rightarrow2c-b+a=2b\Rightarrow2c+a-3b=0\Rightarrow3b-2c=a\Rightarrow3b-a=2c\)
\(\frac{2a+b-c}{c}=2\Rightarrow2a+b-c=2c\Rightarrow2a+b-3c=0\Rightarrow3c-2a=b\Rightarrow3c-b=2a\)
Vậy \(P=\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}=\frac{c.a.b}{2b.2c.2a}=\frac{1}{8}\)
tham khảo bài tương tự này :
Câu hỏi của so yeoung cheing - Toán lớp 7 - Học toán với OnlineMath
Ta có : \(\frac{3a+b+2a}{2a+c}=\frac{a+3b+c}{2b}=\frac{a+2b+2c}{b+c}\)
\(\Rightarrow\frac{a+b+c+2a+c}{2a+c}=\frac{a+b+c+2b}{2b}=\frac{a+b+c+b+c}{b+c}\)
\(\Rightarrow\frac{a+b+c}{2a+c}+1=\frac{a+b+c}{2b}+1=\frac{a+b+c}{b+c}+1\)
\(\Rightarrow\frac{a+b+c}{2a+c}=\frac{a+b+c}{2b}=\frac{a+b+c}{b+c}\)
\(\Rightarrow2a+c=2b=b+c\)
\(\Rightarrow\hept{\begin{cases}c=b\\a=\frac{1}{2}b\end{cases}}\)
Thay vào biểu thức trên , ta được :
\(P=\frac{\left(\frac{1}{2}b+b\right)\left(b+b\right)\left(b+\frac{1}{2}b\right)}{\frac{1}{2}b.b.b}\)
Vậy \(P=9\)
Trừ cả 3 đi 1 ta còn
\(\frac{a+b+c}{2a+c}=\frac{a+b+c}{2b}=\frac{a+b+c}{b+c}\)
Vói a+b+c=1 thì P=-1
Với a+b+c khác 0 thì
\(\Rightarrow2a+c=2b=b+c\Rightarrow2a=b=c\)
\(\Rightarrow P=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\frac{3}{2}b2c3a}{abc}=9\)
Vậy............
Câu hỏi của Hà My Trần - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo câu hỏi ở link này.
Xét \(a+b+c=0\) thì \(\hept{\begin{cases}a+2b=c\\b+2c=a\\c+2a=b\end{cases}}\)\(\Rightarrow P=\frac{\left(2a+b\right)\left(2b+c\right)\left(2c+a\right)}{abc}=1\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(a+b+c=\frac{a+2b-c}{c}=\frac{b+2c-a}{a}+\frac{c+2a-b}{b}=\frac{a+2b-c+b+2c-a+c+2a-b}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=2\)
\(\Rightarrow\hept{\begin{cases}a+2b=3c\\b+2c=3a\\c+2a=3b\end{cases}}\)\(\Rightarrow P=\frac{3a.3b.3c}{abc}=27\)
Có a+2b-c/c=b+2c-a/a=c+2a-b/b
suy ra a+2b-c/c=b+2c-a/a=c+2a-b/b=a+2b-c+b+2c-a+c+2a-b/a+b+c=2a+2b+2c/a+b+c=2
suy ra a+2b-c=2c suy ra a+2b=3c
b+2c-a=2a suy ra b+2c=3a
c+2a-b=2b suy ra c+2a=3b
Có P=(2+a/b)(2+b/c)(2+c/a)=(2b+a/b)(2c+b/c)(2a+c/a)=(3c/b)(3a/c)(3b/a)=27abc/abc=27